CAPITAL UNIVERSITY OF SCIENCE AND TECHNOLOGY, ISLAMABAD

Comparative Genomic Analysis to Explore Key

Genetic Factors Associated with Probiotic

Capabilities of Akkermansia muciniphila

by

Shabeen Fatima

A thesis submitted in partial fulfillment for the degree of Master of Science

in the

Faculty of Health and Life Sciences Department of Bioinformatics and Biosciences

2020

Copyright \bigodot 2020 by Shabeen Fatima

All rights reserved. No part of this thesis may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, by any information storage and retrieval system without the prior written permission of the author. I dedicate this thesis to my parents and my teachers.

CERTIFICATE OF APPROVAL

Comparative Genomic Analysis to Explore Key Genetic Factors Associated with Probiotic Capabilities of *Akkermansia muciniphila*

by

Shabeen Fatima

(MBS183015)

THESIS EXAMINING COMMITTEE

S. No.	Examiner	Name	Organization
(a)	External Examiner	Dr. S. Babar Jamal Bacha	NUMS, Islamabad
(b)	Internal Examiner	Dr. Erum Dilshad	CUST, Islamabad
(c)	Supervisor	Dr. Syeda Marriam Bakhtiar	CUST, Islamabad

Dr. Syeda Marriam Bakhtiar Thesis Supervisor December, 2020

Dr. Sahar Fazal Head Dept. of Biosciences & Bioinformatics December, 2020 Dr. Muhammad Abdul Qadir Dean Faculty of Health & Life Sciences December, 2020

Author's Declaration

I, Shabeen Fatima hereby state that my MS thesis titled "Comparative Genomic Analysis to Explore Key Genetic Factors Associated with Probiotic Capabilities of *Akkermansia muciniphila*" is my own work and has not been submitted previously by me for taking any degree from Capital University of Science and Technology, Islamabad or anywhere else in the country/abroad.

At any time if my statement is found to be incorrect even after my graduation, the University has the right to withdraw my MS Degree.

(Shabeen Fatima)

Registration No: MBS183015

Plagiarism Undertaking

I solemnly declare that research work presented in this thesis titled "**Comparative Genomic Analysis to Explore Key Genetic Factors Associated with Probiotic Capabilities of** *Akkermansia muciniphila*" is solely my research work with no significant contribution from any other person. Small contribution/help wherever taken has been dully acknowledged and that complete thesis has been written by me.

I understand the zero tolerance policy of the HEC and Capital University of Science and Technology towards plagiarism. Therefore, I as an author of the above titled thesis declare that no portion of my thesis has been plagiarized and any material used as reference is properly referred/cited.

I undertake that if I am found guilty of any formal plagiarism in the above titled thesis even after award of MS Degree, the University reserves the right to withdraw/revoke my MS degree and that HEC and the University have the right to publish my name on the HEC/University website on which names of students are placed who submitted plagiarized work.

(Shabeen Fatima)

Registration No: MBS183015

Acknowledgements

In the name of **Allah**, the Most Gracious and the Most Merciful Alhamdulillah, all praises to Allah for giving me strength and for His blessings in completing my MS thesis. First, I would like to express my gratitude to Capital University of Science and Technology (CUST) Islamabad my Alma matter for providing me an opportunity to do MS Biosciences and achieving my goal to pursue higher studies. I would like to start with a special appreciation that goes to my Supervisor, **Dr. Syeda Marriam Bakhtiar**, Assistant Professor, CUST for her support, encouragement and guidance throughout this Pandemic Situation. She helped me a lot and answered my all queries on time. I want to extend special thanks to her. I would like to acknowledge the contributions of all my teachers Dr.Shaukat Iqbal, Dr.Erum Dilshad, Dr. Arshia Amin and our beloved HoD Dr. Sahar Fazal. Finally, I express my gratitude to my parents and siblings for providing me support and help me throughout my years of study and through the process of researching and writing this thesis.

(Shabeen Fatima)

Registration No: MBS183015

Abstract

In contrast to antibacterial drugs, probiotics are gaining interest as an alternative to treat and control digestive malfunctions including functional gastrointestinal disorders. Probiotics comes with a property to not only support a gut barrier but also enhancing health by supporting immune system. This ability of probiotics in supporting and enhancing the activities of immune system have been also utilized to control inflammatory diseases Akkermansia muciniphila is a species of bacteria that helps to maintain our gut lining and possess many health benefits. Akkermansia muciniphila (A. muciniphila), an intestinal symbiont colonizing in the mucosal layer, is considered to be a promising candidate as probiotics. Akkermansia muciniphila is known to have an important value in improving the host metabolic functions and immune responses. Moreover, Akkermansia muciniphila may have a value in modifying cancer treatment. However, most of the current researches focus on the correlation between Akkermansia muciniphila and diseases, and little is known about the causal relationship between them. This study was designed to analyse genomic features of Akkermansia muciniphila so analyse its safety to be used as probiotic and also to evaluate its probiotic potentials. Pangenome analysis COG and phylogenetic analysis revealed that Akkermansia *muciniphila* shows a stable genome character. The antibiotic resistance pattern was analysed and only intrinsic resistant genes necessary of prophiotics were present and no multidrug resistance was found. It was also found that no pathogenicity islands or virulent genes are present in any of the selected strains. Hence, Akkermansia muciniphila could be considered safe to be used as probiotic, for further validation, genomic islands of each strain were separately analysed. Bacteriocin producing genes of each strain were also analysed proposing the conclusion that Akkermansia muciniphilais safe and has potential to be used as probiotic against inflammatory diseases especially obesity.

Keywords: A. muciniphila, probiotics, metabolic disorders

Contents

A [.]	utho	r's Declaration	iv
P	lagiaı	rism Undertaking	v
A	cknov	wledgements	vi
A	bstra	ıct	vii
Li	st of	Figures	xi
Li	st of	Tables	xiv
A	bbre	viations	xvi
1	Intr	roduction	1
	1.1	Background	1
	1.2	Characteristics of Probiotics	2
	1.3	Akkermansia muciniphila as Probiotics	3
	1.4	Aim and Objectives	7
2	Lite	erature Review	9
	2.1	Probiotics and their Role in Gut Health	9
	2.2	Significance of Probiotics	10
	2.3	Mechanisms of Probiotic Action	11
	2.4	Probiotics as Barriers	13
	2.5	Production of Antimicrobial Substances	13
	2.6	Competition for an Attachment to Intestinal Cells	14
	2.7	Immune Modulation	15
	2.8	Intervention with Quorum Sensing Signaling	15
	2.9	Role of Probiotics Against Gastrointestinal Diseases	16
		2.9.1 Antibiotics-Associated Diarrhea	18
		2.9.2 Infections of <i>Clostridium difficile</i>	18
		2.9.3 <i>Helicobacter Pylori</i> infections	20
		2.9.4 Irritable Bowel Syndrome (IBS)	20
		2.9.5 Ventilator-Associated Pneumonia	21

		2.9.6	Allergy and Enhancement of Immune Response	2
	2.10	Safety	Concerns with Use of Bacteria as	
		Probic	\mathbf{tics}	2
	2.11	Acid a	and Bile Tolerance	3
	2.12	Comp	etitive Exclusion of Pathogens	4
	2.13	Adhes	100	4
	2.14	Bacter	riocin Production $\ldots \ldots 2$	5
	2.15	Immu	no Modulation 2	5
	2.16	Akker	mansia muciniphila and its Potential as Probiotic	6
2	Ma	torial	and Mothods 29	Q
3	1 VIA		ain Data Collection	0
	3.1	Genon		9
		3.1.1	Selection of Strains	9
		3.1.2	Retreival of Bacterial Sequences	9
		3.1.3	Selection of Reference Strain	0
		3.1.4	Quality Assessment	0
	3.2	Bacter	rial Pan-Genome Analysis	0
		3.2.1	Comparative Analysis of Orthologous Genes	1
		3.2.2	Phylogenetic Analysis	1
	3.3	Antibi	otic Resistance (Resistome)	
		Deterr	ninants	2
	3.4	Virule	nce Factors	2
		3.4.1	Genomic Islands Determination	3
4	Res	ult and	d Analysis 34	4
	4.1	Genon	nic Data Collection 3	4
		4 1 1	Selection Of Strains	4
		1.1.1	Selection of Beference Cenome	7
		4.1.2	Cone Prediction and Annotation	2
	4.9	4.1.0 Don C	General reduction and Annotation	0
	4.2	ran G	Evelopiero Con e Ferrile Analysis	0 F
		4.2.1	Exclusive Gene Family Analysis	Э С
		4.2.2	Sequence Extraction	0
		4.2.3	Phylogenetic Analysis	6
		4.2.4	Clusters of Orthologous Genes	1
		4.2.5	Determination of Genetic Islands	9
		4.2.6	Akkermansia muciniphila ATCC BAA-835	2
		4.2.7	Akkermansia muciniphila CBA5201	4
		4.2.8	Akkermansia muciniphila DSM 22959	8
		4.2.9	Akkermansia muciniphila JCM 30893 6	1
		4.2.10	Akkermansia muciniphila AMDK-7	3
		4.2.11	Akkermansia muciniphila AMDK-8	6
		4.2.12	Akkermansia muciniphila AMDK-10	8
		4.2.13	Akkermansia muciniphila AMDK-11	2
		4.2.14	Akkermansia muciniphila AMDK-12	5
		4 2 15	Akkermansia mucininhila AMDK-13	8
		1.2.10		\mathcal{O}

4.2.16 Akkermansia muciniphila AMDK-14
4.2.17 Akkermansia muciniphila AMDK-15
4.2.18 Akkermansia muciniphila AMDK-16
4.2.19 Akkermansia muciniphilaAMDK-17
4.2.20 Akkermansia muciniphila AMDK-18
4.2.21 Akkermansia muciniphila AMDK-19
4.2.22 Akkermansia muciniphila AMDK-20
4.2.23 Akkermansia muciniphila AMDK-21
4.2.24 Akkermansia muciniphila AMDK-22
5 Conclusions and Recommendations 104
Bibliography 106

List of Figures

1.1	Mechanism of Action of Probiotics in Gut where (a) Adhesion of Microorganisms and then their Colonization (b) Indicates Activa- tion and Enhancement of Immune system (c) Creat an Epithelial	
	Barrier (d) Competition with Pathogens (e) Bacteriocin Production	4
1.2	Akkermansia muciniphila ATCC BAA-835 Micrograph taken by the Scanning Electron Microscope [1]	5
1.3	Mechanisms of Action, by which Akkermansia muciniphila Helps in	0
	Health Maintenance[2].	6
2.1	Role of Probiotics in Human Health [13]	11
3.1	Summarizes the Methodological Steps used to Analyze Probiotic Potentials of <i>Akkermansia muciniphila</i> .	28
4.1	Circular Genomic View of Akkermansia muciniphila Strain ATCC BAA-835 along with Major Genomic Regions.	37
4.2	Gene Accumulation Curve of All Selected Strains, the Curve in Purple Indicates Core Genome and the Trend Indicates that the Number of Core Genes Decrease with Addition of New Strain. The curve in Orange Color Indicates that Pangenome which Show the Trend of Increase in Pangenome with Addition of Each Strain	42
4.3	The Pan Genome Profile Trends Obtained using BPGA, Pangenome is Indicated by Cyan Color and Show an Increasing Trend, While Pink Color Show Core Genome Depicted a Decrease with Addition	
	of Each Strain.	42
$4.4 \\ 4.5$	Information About Core Accessory Unique Genes from Roary Number of New Genes or Unique Genes Added to Pangenome with	45
	Addition of Each New Strain in Pan Genomic Analysis	46
4.6	Phylogenetic Tree of All Selected Strains	47
4.7	Clusters of Orthologous Groups (COG) and Distribution of the Core Genes, Accessory Genes and Unique Genes in Akkermansia	
	muciniphila Strains.	47
4.8	Distribution of the Core genes, Accessory Genes and Unique Genes Involve in Different Processes in <i>Akkermansia muciniphila</i> Strains.	48
4.9	Genetic Islands in <i>Akkermansia muciniphila</i> ATCC BAA-835 as Predicted by Island Viewer.	52

4.10	Bacteriocin of Akkermansia muciniphila ATCC- BAA 835 from	
	BAGEL4	54
4.11	Genetic Islands in Akkermansia muciniphila CBA5201 as Predicted	
	by Island Viewer.	55
4.12	Bacteriocin of Akkermansia muciniphila CBA5201 from BAGEL4 .	58
4.13	Genetic Islands in Akkermansia muciniphila DSM 22959 as Pre-	
	dicted by Island Viewer.	59
4.14	Bacteriocin of Akkermansia muciniphila DSM22959 from BAGEL $% \mathcal{A}$.	61
4.15	Genetic islands in Akkermansia muciniphilaJCM 30893 as Predicted	60
	by Island Viewer.	62
4.16	Bacteriocin of Akkermansia muciniphila JCM 30893 from BAGEL4	63
4.17	Bacteriocin of Akkermansia muciniphila AMBK-7 from BAGEL4 .	63
4.18	Genetic Islands in Akkermansia muciniphila AMDK-7 as Predicted	0.4
1.10	by Island Viewer.	64
4.19	Genetic Islands in Akkermansia muciniphila AMDK-8.as Predicted	60
4 90	Dy Island Viewer.	00 69
4.20	Bacteriocin of Akkermansia muciniphila AMBK-8 from BAGEL4	08
4.21	Genetic Islands III Akkermansia muciniphua AMDK-10 as Predicted	60
1 22		$\frac{09}{72}$
4.22	Constic Islands in Alkermancia mucininhila AMDK 11 as Predicted	12
4.20	by Island Viewer.	73
4.24	Bacteriocin of Akkermansia muciniphila AMBK-11 from BAGEL4	75
4.25	Genetic Islands in Akkermansia muciniphila AMDK-12 as Predicted	
	by Island Viewer.	76
4.26	Bacteriocin of Akkermansia muciniphila AMBK-12 from BAGEL4.	78
4.27	Genetic Islands in Akkermansia muciniphila AMDK-13 as Predicted	
	by Island Viewer.	79
4.28	Bacteriocin of Akkermansia muciniphila AMBK-13 from BAGEL4.	82
4.29	Genetic Islands in Akkermansia muciniphila AMDK-14 as Predicted	
	by Island Viewer.	82
4.30	Bacteriocin of $Akkermansia\ muciniphila\ AMBK-14\ from\ BAGEL4$.	84
4.31	Genetic Islands in Akkermansia muciniphila AMDK-15 as Predicted	
	by Island Viewer.	84
4.32	Bacteriocin of Akkermansia muciniphila AMBK-15 from BAGEL4.	87
4.33	Genetic Islands in Akkermansia muciniphila AMDK-16 as Predicted	
	by Island Viewer.	89
4.34	Bacteriocin of $Akkermansia\ muciniphila\ AMBK-16\ from\ BAGEL4$.	89
4.35	Genetic Islands in Akkermansia muciniphila AMDK-17 as Predicted	
	by Island Viewer.	90
4.36	Bacteriocin of $Akkermansia\ muciniphila\ AMBK-17\ from\ BAGEL4$.	91
4.37	Genetic Islands in <i>Akkermansia muciniphila</i> AMDK-18 as Predicted	
	by Island Viewer.	92
4.38	Bacteriocin of Akkermansia muciniphila AMBK-18 from BAGEL4 .	93

4.39	Genetic Islands in Akkermansia muciniphila AMDK-19 as Predicted	
	by Island Viewer.	95
4.40	Bacteriocin of Akkermansia muciniphila AMBK-19 from BAGEL4 .	95
4.41	Genetic Islands in Akkermansia muciniphila AMDK-20. as pre-	
	dicted by Island Viewer.	96
4.42	Bacteriocin of Akkermansia muciniphila AMBK-20 from BAGEL4 .	98
4.43	Genetic islands in Akkermansia muciniphila AMDK-21 as predicted	
	by Island Viewer.	98
4.44	Genetic Islands in Akkermansia muciniphila ATCC BAA-835 as	
	Predicted by Island Viewer	00
4.45	Genetic Islands in Akkermania muciniphila AMDK-22 as Predicted	
	by Island Viewer	.01
4.46	Bacteriocin of Akkermansia muciniphila AMBK-22 from BAGEL4 . 1	_03

List of Tables

1.1	Characteristics of Probiotics [5]	2
2.1	Mechanisms of Probiotic Actions [15]	12
2.1	Mechanisms of Probiotic Actions [15]	13
2.2	List of Different Strains of Probiotics Against Gastrointestinal In-	
	fectious Diseases [36].	16
2.2	List of Different Strains of Probiotics Against Gastrointestinal In-	
	fectious Diseases [36].	17
2.3	Correlation between Akkermansia muciniphila and Disease in Hu-	
	mans [78]	26
2.3	Correlation between Akkermansia muciniphila and Disease in Hu-	
	mans [78]	27
4 1	List of Colored Studies After Literature Design Studies never Se	
4.1	List of Selected Strains After Enterature Review, Strains were Se-	
	Related to Source of Isolation	35
42	Summarizes the Findings of Genome Annotation Using BAST Server	38
4.3	Information about Core Variable and Unique genes	43
4.4	Results from Boary for Pangenome Analysis	45
4.5	Antibiotic Resistance Genes through CARD Analysis	49
4.6	Islands of Akkermansia mucininhila ATCC-BAA 835 Strain	53
4.6	Islands of Akkermansia muciniphila ATCC-BAA 835 Strain	54
4 7	Islands of Akkermansia muciniphila CBA5201 Strain	55
4.7	Islands of Akkermansia muciniphila CBA5201 Strain	56
4 7	Islands of Akkermansia muciniphila CBA5201 Strain	57
47	Islands of Akkermansia muciniphila CBA5201 Strain	58
4.8	Islands of Akkermansia muciniphila DSM22959 Strain	59
4.8	Islands of Akkermansia muciniphila DSM22959 Strain	60
4.8	Islands of Akkermansia muciniphila DSM22959 Strain	61
4.9	Islands of Akkermansia muciniphila JCM30893 Strain	62
4.9	Islands of Akkermansia muciniphila JCM30893 Strain	63
4.10	Islands of Akkermansia muciniphila AMDK-7 Strain	64
4.10	Islands of Akkermansia muciniphila AMDK-7 Strain	65
4.10	Islands of Akkermansia muciniphila AMDK-7 Strain	66
4.11	Islands of Akkermansia muciniphila AMDK-8 Strain	66
4.11	Islands of Akkermansia muciniphila AMDK-8 Strain	67

Islands of Akkermansia muciniphila AMDK-10 Strain	69
Islands of Akkermansia muciniphila AMDK-10 Strain	70
Islands of Akkermansia muciniphila AMDK-10 Strain	71
Islands of Akkermansia muciniphila AMDK-10 Strain	72
Islands of Akkermansia muciniphila AMDK-11 Strain	73
Islands of Akkermansia muciniphila AMDK-11 Strain	74
Islands of Akkermansia muciniphila AMDK-11 Strain	75
Islands of Akkermansia muciniphila AMDK-12 Strain	76
Islands of Akkermansia muciniphila AMDK-12 Strain	77
Islands of Akkermansia muciniphila AMDK-12 Strain	78
Genetic islands in Akkermansia muciniphila AMDK-13	79
Genetic islands in Akkermansia muciniphila AMDK-13	80
Genetic islands in Akkermansia muciniphila AMDK-13	81
Islands of Akkermansia muciniphila AMDK-14 Strain	83
Islands of Akkermansia muciniphila AMDK-15 Strain	85
Islands of Akkermansia muciniphila AMDK-15 Strain	86
Islands of Akkermansia muciniphila AMDK-16 Strain	87
Islands of Akkermansia muciniphila AMDK-16 Strain	88
Genetic Islands in Akkermansia muciniphila AMDK-17	90
Genetic Islands in Akkermansia muciniphila AMDK-17	91
Islands of Akkermansia muciniphila AMDK-18 Strain	92
Islands of Akkermansia muciniphila AMDK-19 Strain	93
Islands of Akkermansia muciniphila AMDK-19 Strain	94
Islands of Akkermansia muciniphila AMDK-20 Strain	96
Islands of Akkermansia muciniphila AMDK-20 Strain	97
Genetic islands in Akkermansia muciniphila AMDK-21	99
Genetic islands in Akkermansia muciniphila AMDK-21	100
Islands of Akkermansia muciniphila AMDK-22 Strain	101
Islands of Akkermansia muciniphila AMDK-22 Strain	102
Islands of Akkermansia muciniphila AMDK-22 Strain	103
	Islands of Akkermansia muciniphila AMDK-10 StrainIslands of Akkermansia muciniphila AMDK-11 StrainIslands of Akkermansia muciniphila AMDK-12 StrainIslands of Akkermansia muciniphila AMDK-12 StrainIslands of Akkermansia muciniphila AMDK-12 StrainIslands of Akkermansia muciniphila AMDK-13Islands of Akkermansia muciniphila AMDK-13Islands of Akkermansia muciniphila AMDK-13Islands of Akkermansia muciniphila AMDK-13Genetic islands in Akkermansia muciniphila AMDK-13Islands of Akkermansia muciniphila AMDK-14 StrainIslands of Akkermansia muciniphila AMDK-15 StrainIslands of Akkermansia muciniphila AMDK-16 StrainIslands of Akkermansia muciniphila AMDK-16 StrainIslands of Akkermansia muciniphila AMDK-16 StrainIslands of Akkermansia muciniphila AMDK-17Islands of Akkermansia muciniphila AMDK-18 StrainIslands of Akkermansia muciniphila AMDK-19 StrainIslands of Akkermansia muciniphila AMDK-20 StrainIslands of Akkermansia muciniphila AMDK-21Islands of Akkermansia muciniphila AMDK-22 StrainIslands of Akkermansia muciniphila AMDK-22 Strain <t< td=""></t<>

Abbreviations

BPGA	Ultra-Fast Bacterial Pan-Genome Analysis Pipelin	
CARD	Comprehensive Antibiotic Resistance Database	
\mathbf{CDS}	Coding DNA Sequence	
\mathbf{GI}	Genomic Island	
HGT	Horizontal Gene Transfer	
MGEs	Mobile Genetic Elements	
VFDB	Virulence Factor of Bacterial Pathogens Database	

Chapter 1

Introduction

1.1 Background

Probiotics are live nonpathogenic microorganisms widely used in pharmaceutical, medicinal and food industries. In past few years focus has been shifted towards not only the characteristics of well-defined and newly discovered probiotics but also on their capabilities. Generally, probiotics are desired to have resistance to acid and bile salts in order to avoid dysbiosis and inflammatory responses [1].

In contrast to antibacterial drugs, probiotics are gaining interest as an alternative to treat and control digestive malfunctions including functional gastrointestinal disorders. Probiotics comes with a property to not only support a gut barrier but also enhancing health by supporting immune system [8]. This ability of probiotics in supporting and enhancing the activities of immune system have been also utilized to control inflammatory diseases such as rheumatoid arthritis [1] ,type 1 diabetes [4], multiple sclerosis [4], atopic dermatitis [4], and myasthenia gravis [4].

Not only against infections and inflammations, probiotics have also been reported to have a significant role in treating cancers, neurodegenerative diseases, metabolic syndrome and psychiatric illnesses, as well as for the patients who are on mechanical ventilators in intensive care units [8]. Despite all these promising application of probiotics in control and treatment of diseases, the major challenge still remains the selection of suitable probiotic strain [3].

1.2 Characteristics of Probiotics

Probiotic bacteria are simply defined in terms of live cultures or living bacterial species which can help in health maintenance of digestive tract i. e. they have capability to maintain balance in the gut microbiota which could be disturbed as an outcome of infection or use of antibiotics [5]. This basic definition helps us to understand why the features or parameters on which a probiotic is analyzed are usually focused on their capability to survive in gastrointestinal tract involving tolerance to acids and bile salts [6], microcin and hydrogen peroxide production for competitive advantage and antimicrobial ability [7], and impact or stimulation of immune system [8]. All the researches involving classical research or structural and functional genomics mostly focus on these parameters. Table 1.1 summarizes characteristic properties of probiotics.

TABLE 1.1: Characteristics of Probiotics [5].

Characteristics
They can show maximum viability in the digestive system
They don't pretend the toxicity, as well as pathogenicity.
They should be capable to colonize in the intestinal epithelial cells.
They can consume the maximum nutrients and substrate in normal diets
_

Based on these parameters few bacterial genera and species are considered at higher rank with respect to probiotic capabilities. These species include *Lacti*casei bacilluscasei, Lactobacillus delbruekii, Lactobacillus acidophilus, Lactiplantibacillus plantarum, Limosilactobacillus fermentum, Limosilactobacillusreuteri, Bifidobacterium breve, Bifidobacterium longum, Bifidobacterium lactis, Propionibacterium freudenreichii, Bacillus subtilis, Bacillus cereus, E.coli and Entrecoccus *faecium*. All of these species have therapeutic application in prevention and treatment of intestinal disorders, such as diarrhea in newborns [9]. Most of the studies in recent past have been focused on Lactic Acid bacteria and their potential as probiotics among which most of the Lactic acid bacteria under focus were of gut origin.

Whatever is the source of or type of probiotic strain, when it comes to its applications and introduction to living hosts various factors including formulation and dose are also considered so that the strain can impart the desired property and activate immune system [9]. Figure 1.1 summarizes various mechanisms by which probiotics help in health maintenance and enhancement. Therefore, the research focus has now diverted to understand the host bacteria interactions, activation of immune system and many more using the state of art technologies of genomics, proteomics, interactomes and transcriptomics. With advent of Genetic engineering the focus was diverted from probiotic strains to probiotic genes, genomic analysis is performed to identify genes responsible for probiotic features. Transcriptomics and proteomics studies have been utilized to identify differentially expressed genes to differentiate or categories probiotic and non-probiotic strains of same bacterial species. Networks and pathways along with protein-protein interactions further elucidated the mechanisms of probiotic action.

1.3 Akkermansia muciniphila as Probiotics

Although many disease conditions are reported to be improved with probiotics use, but yet major source of probiotic strains still remains gut microbiota. Similarly, major applications of probiotics ate also against metabolic dysfunctions and gastrointestinal tract. Inflammatory and metabolic disease which is getting lots of interest is obesity, and potential use of probiotics to reduce body weight is talk of the town these days. *Akkermansia muciniphila*, discovered at Wageningen university of the Netherlands in 2004 in search of mucin-degrading bacteria from human fecal matter [10]. This bacterium is gram negative oval shaped (Figure 1.2),

FIGURE 1.1: Mechanism of Action of Probiotics in Gut where (a) Adhesion of Microorganisms and then their Colonization (b) Indicates Activation and Enhancement of Immune system (c) Creat an Epithelial Barrier (d) Competition with Pathogens (e) Bacteriocin Production

non-motile, non-endospore forming, strictly anaerobic (few studies report that it can tolerate low levels of oxygen) and widely distributed in among intestinal microflora of various animals including humans [10]. In humans it is more abundant in intestinal mucosal layer of caecum of both healthy adults and infants [11].

Akkermansia muciniphila, is among the most frequent species among the meta genomes of healthy gut, rather is considered in amongst top 20 of commonly reported species. It is reported to colonize healthy gut during first year after birth and gradually reaches the level of healthy adults but later the number reduces with age. Introduction of this bacterial species to gut is due to its presence in human milk, therefore milk carries Akkermansia muciniphila from mothers to the feeding infants. Its presence in newborn gut is evident of this transmission. At this stage the acid tolerance capabilities along with the ability to utilize milk polysaccharides enables this species helps it to colonize the gastrointestinal tract [11].

Despite the presence of few probiotic capabilities and reports of involvement of *Akkermansia muciniphila* in disease control, this bacterium is still not efficiently

FIGURE 1.2: Akkermansia muciniphila ATCC BAA-835 Micrograph taken by the Scanning Electron Microscope [1].

used as probiotic strain. Akkermansia muciniphila, is been focus mainly to understand the mechanism by which this specie is related to disease (Figure 1.3). In most cases it is not considered as cause of diseases, but its contribution in onset of various diseases is debatable and marks questions on its safety for use in humans. This is the major reason for which this bacterium has not widely been used in foods and medicines but there have been suggestive evidences that this bacterium could be used safely in humans [12].

Although Akkermansia muciniphila is not pathogenic and never reported to be a primary cause of any diseases, but its property of adhesion is always questioned. It also possesses the capability to adhere with intestinal mucosal layer and degrade it, which further enhance the concerns regarding its safety. Although it is well reported that contrary to pathogenic bacteria Akkermansia muciniphila only

FIGURE 1.3: Mechanisms of Action, by which Akkermansia muciniphila Helps in Health Maintenance[2].

adhere and degrade outer mucosal area and never reach inner layers, as reaching inner layers require more pathogenic genes. In addition to this, degradation of mucosal layers is part of intestinal self-renewal balance and is a normal process [12]. Although Gram negative bacteria with lipopolysaccharides, *Akkermansia muciniphila* is not reported to be associated with endotoxemia rather presence of this bacteria is found to be associated with reduction of endotoxins level in mice with high fat diet. Like all other mucin degrading bacteria, *Akkermansia muciniphila* is also with the capability to regulate host immune system through various cytokines including necrosis factors such as TNF -alpha, INF-alpha, and interleukins such as IL-10 and IL-4 [10].

Similarly adherence ability of Akkermansia muciniphila with mucosal layer is an important characteristic of a potential probiotic. Intestinal mucosal linings are there to prevent microbial/pathogenic attacks on epithelial layer and this mucosa also provide nutrition to the adhered microbes. Microbes attached to the intestinal mucosa provide competition to potential pathogens and do not allow them to attack intestinal epithelium. Akkermansia muciniphila is reported to be a typical representative of this competition [11]. The frequency and distribution of Akkermansia muciniphila varies in different regions of intestine depending upon the nutrient availability.

As discussed earlier that Akkermansia muciniphila has not been reported to be

cause of any diseases but found to be associated with various diseases. This association is two facet, one the distribution and frequency of *Akkermansia muciniphila* increase in diseases condition, but on the other hand it is well reported that decrease in *Akkermansia muciniphila* number is strongly associated with metabolic diseases such as obesity, diabetes, hypertension, inflammatory bowel disease, autism and atopy [12]. The association is well evident from observational and animal model studies. Although the mechanisms by which this association works is still unclear but yet we can conclude that *Akkermansia muciniphila* is a key player in maintaining homeostasis and healthy physiology of human gut.

Obesity is emerged as a major threat to human health and focus has been to find effective remedies against its onset, control and weight reduction. As it is an aesthetic issue as well therefore a lot of investment is done on finding solutions for effective weight loss. Interestingly, *Akkermansia muciniphila* has found to be effective against obesity prevention. Similarly, decrease in number of *Akkermansia muciniphila* in children suffering with IgE-related atopic diseases, suggest an important role of this bacteria in immune modulation [13].

Akkermansia muciniphila, has a great potential as probiotic that can make good use of gastrointestinal mucin, but its safety is debated. Various studies are evident of the safety and suggest oral administration of Akkermansia muciniphila but more human trials are required. Computational biology and bioinformatics tools including comparative genomins and pangenome analysis can provide significant insight into genome of Akkermansia muciniphila and help us to understand population structure as well evolutionary history [14].

1.4 Aim and Objectives

Obesity and metabolic diseases have increases enormously in past few years either due to change in lifestyle or food intake. Lots of weight loss remedies are in use and probiotics are one of them. There is a requirement to identify probiotic strains that could help in weight loss or can prevent obesity. One of the bacterial specie which shows a potential to be used against obesity as probiotic is *Akkermansia* muciniphila. This normal gut micro flora resides in human intestinal mucosa. Although *Akkermansia muciniphila* is not reported to be cause of any disease, this strain adhere to intestinal mucosa and degrade it. This question on its safety leads to a debate on its use as probiotics. This study is designed with an aim to explore genome of *Akkermansia muciniphila*, strains and get an insight into core, accessory and unique genes it posses to check if this bacteria or some of its starin could be used as probiotic. We have also tried to identify genetic differences among genomes of probiotic, non pathogenic-non probiotics, pathogenic strains. The study is designed with given objectives.

- 1. Selection of Akkermansia muciniphila strains
- 2. Determination of core and variable genome in *Akkermansia muciniphila* strains
- 3. Determination of genetic potential as probiotic

Chapter 2

Literature Review

This chapter covers the review of literature published in recent years with respect to probiotic potential. The role of *Akkermansia muciniphila* and its genomic potential as promising probiotic.

2.1 Probiotics and their Role in Gut Health

The word probiotics confer for the live microorganisms that are new word meaning for new life. when they are administered an adequate amount for humans and animals which give beneficial effects [3]. Alternatively, these probiotics have been defined as live microbial supplements that played an active role in the intestinal microbial balance by maintaining the human health [4].

Probiotic most commonly used to improve the health of both animals and humans by the modulation of intestinal microbiota. According to the reference of beneficial gut microbiota, the well-known genera *Bifidobacterium* and *Lactobacillus* are available in the human gut both together are play active role against the infectious pathogens and also boost up the immune systems of humans [5]. There are many beneficial effects of probiotics directly relate to consumption quantity [6]. These probiotics microorganisms improve the intestinal health of humans by regulating the balance in gut microbiota, enhancing the bioavailability of nutrients, reduce the risk of infections and also enhance lactose tolerance [7]. The availability of gut microbiota is too much matter they can be found in both products dairy as well nondairy. The probiotics most commonly recommended as food supplements after the antibiotics therapy during serious illness, because they destroy the harmful microflora present in the digestive tract. Regular consumption of gut microbiota enhances the positive impact on the human body and established good relations in the population of beneficial microbes in the intestinal flora. The initial role of probiotics to protect against the GI infectious diseases [8]. There are any disturbance in the population of gut microbiota leads to serious GIT diseases and enhanced the infectious of pathogens so the probiotics therapy is recommended to maintain the balance of in beneficial gut microbiota [9].

The development of alternative method such as alternative therapies and adjuvants developments is based on the replacements of bacteria make them more resistant against the antibiotics and leads to adverse effects on the probiotics flora, which enhance the risk of infections [10]. In the last few years advancement of medical sciences also enhanced the knowledge about the gut intestinal microbiota, genetics, immunity and infectious host diseases. Such information provides a suitable way for developments of new appropriate probiotics strains with diseases-specific and could also provide information about the use of the probiotic and how they affect the specific pathological conditions. However, the developments of new probiotics undergo the clinical trial on animals before humans in order to maintain the authenticity, safety, suitability, efficacy and benefits of probiotics for human consumptions [11].

2.2 Significance of Probiotics

It is now a fact that the local community of gut microbiota in the host body is host-specific, location-specific and very diverse in composition and has a lot of beneficial characteristics. It is still not clear which species of gut microbiota act as a key role in gut beneficial properties. Figure 2.1 show the role of probiotics in maintenance of health. These benefits are the reason for which the number of products containing probiotics especially dairy products are increasing [12].

FIGURE 2.1: Role of Probiotics in Human Health [13].

2.3 Mechanisms of Probiotic Action

The functional role of probiotics is not directly related to the colonial population of the intestinal tract. For example, the some of the gut microbiota such as *Bifidobacterium longum* become a member of intestinal gut microflora, while other probiotics like a *Lactobacillus caseiiin* directly played effective role remodeling or influencing the existing community. There are following major role of probiotics in the host body mentioned in Table 2.1 [14].

Mode	Process	Mechanism	Examples
Donnion	Reduced the	$ ext{TNF-}\alpha$	Lactobacillus
function	apoptosis	production	rham nosus GG
Tunction	in epithelial	reduced	
	cells	MUC 2	I a stoba sillars
	Mucin	expression	
	production	enhanced	.spp
	enhanced		
		Defensins	
Host coll	hBD protein	regulation	F coli stroips
antimicrobial	defensins	level enhanced	DSM 17252S2
nontidos		up	DSW 1725252
peptides	Catholiciding	By production	
	Cathenciums	of butyrate	
Antimicrobial	Luminal PH lowering	SCFA's secretion	All most all
probiotics	Production of	Probiotics	bacteria
factors	bacteriocin	gram-positive	are probiotics
	Production of	Probiotics	
	microcin	gram-positive	
		Production of	
A 11	Probiotics	protein directly	
Adherence	compete	or indirectly	
at epithelial	with pathogens	that stoped the	
		adherence	
	pro-inflam		Salmonella
Modulation	matory	By attenuating	ty himurium
of immune	molecules	IL-8 secretions	VSL#3
	are blocked		probiotics

TABLE 2.1: Mechanisms of Probiotic Actions [15].

Mode	Process	Mechanism	Examples	
	Mucosal	Enhanced the		
	immunit	production	L. casei	
	enhanced	of IgA		
Quorum	Communication	Secretes the		
sensing	between the	molecules that	I acidomhilua	
signaling	pathogenic	blocked the	L. aciaophilas	
interference	bacteria blocked	quorum sensing		

TABLE 2.1: Mechanisms of Probiotic Actions [15].

2.4 **Probiotics as Barriers**

Probiotics are competent in changing many components of epithelial intestinal function by regulating mucin production quantity and decreasing the apoptosis of intestinal cells. One of the most common examples of *Lactobacillus rhamno-susGG* present in dairy products as supplements can influence inhibiting tumor necrosis factor (TNF) in intestinal epithelial cells and can the ability to protect cytokine-induced apoptosis in epithelial intestinal cells [16]. *Lactobacillus* species have been playing an active role in the expression of mucin in the intestinal cells in vivo in host epithelial cells thus this mucin production as blocking agents against the pathogenic strain of E. coli in invasion and adherence [17, 18]. *Lactobacillus rhamnosusGG* has played an active role in intestinal cells programmed cell death and inflammation prevention [19]. And also act as an active partner in the regeneration of the mucosal wall and shown the mitogenic effects [20].

2.5 Production of Antimicrobial Substances

Gut microbiota beneficial probiotics induce the changes inside host epithelial cells and produced peptides that are directly released from the epithelial cells these peptides interference the pathogenic interaction on the epithelial cells and stop the invasion of the pathogen at epithelial cells. Inside the curtain epithelial cells antimicrobial peptides cathelicidins and defensins (hBD protein) released from the cells and expressed the antimicrobial activity against the wide variety of bacteria, fungi and viruses [21].

There are certain probiotics such as *Lactobacilli* species and *E.coli* DSM 17252G2 strains the ability to have shown antimicrobial substances such as defensins [22]. The healthy individuals who have received the 3 weeks proper probiotics treatments who had increased the level of fecal hBD proteins for the 9 weeks [23]. The gut probiotics who have released the antimicrobial substances short fatty acid (SCFA), such as lactic acid and acetic acid, defensins, nitric oxide and bacteriocins hydrogen peroxides which reduced the ph of the lumen that makes them unsuitable environments for the bacterial growths [24].

SCFA causes the chemical changes in the outer membrane gram-negative to act as an inhibiting factor for the growth of pathogens [25]. Bacteriocins another antibacterial factor that easily permeable to the inner membrane of gram-negative bacteria, ultimately lead to disruption and pore formations [26]. Microcins target the inner membrane of gram-negative bacteria and the enzymes which are actively involved in the synthesis of DNA or RNA structure, or proteins synthesis enzymes [27].

2.6 Competition for an Attachment to Intestinal Cells

Probiotics are more competent about pathogenic bacteria and compete for pathogens for the adherence of epithelial cells and more than normal level attached to the mucus layer in a well specific strains manner. The inhibitory factor of *L. helvetics* R0052 outer surface proteins act as a resistance barrier against the adherence of *Escherichia coli* O157: H7 [28]. *S. boulardiisecretes* a substance thermo-labile that acts as an antibacterial adherence factor that reduced the adherence of pathogens [29].

2.7 Immune Modulation

It has been reported L. caseiact as beneficial probiotics have been shown to supplement total and enhanced pathogenic specific secretory of level IgA at the specific infection site in mice and also stimulate the Bclass cell to switch the IgA [30]. There are no specific antibodies produce against the L. casei, so that indicating the immune system of the host does not produce any specific anti-body against the beneficial bacterium [31].

L. casei beneficial probiotics regulate the transcription of the number of different genes that code the pro-inflammatory factor such as chemokines, adherence molecules and cytokines molecules that induced the invasion of S. flexneriin intestinal cells. Thesefactors produced the anti-inflammatory result that stope the NF-k β pathways, particularly through the stabilization of I-kB α [32].

2.8 Intervention with Quorum Sensing Signaling

Quorum sensing signaling is a well-mechanized system in between bacteria to communicate with each other and with the surrounding environment through chemical molecules that are called auto-inducers [33].

This quorum sensing mechanism facilitates the bacteria in colonization and regulation of all important traits of enteric microbes to causes the serious infection in their host body [34].

The probiotics strains such as *Lactobacillus acidophilusin* the gut of the human body secrets the molecule that targets the genes of *E. coli* O157 and stope the transcription and opposed the pathogenicity of bacteria in the human's body [35].

2.9 Role of Probiotics Against Gastrointestinal Diseases

The probiotics research is categorized on two main stages to evaluation of the infectious diseases and their prevention. First stage laboratory studies and second is a clinical trial to check the efficacy and safety Table 2.2.

Disease	Probiotics strain	Comment	
		The number needed	
Prevention of	S. boulardii	for the treatment of	
antibiotic-associated		cases is 10.2 prevent.	
diarrhea (ADD)	Lactobacillus	Effect on the children	
	rhamnose GG	and adults in RCT.	
Prevention of		Statistically,	
infection <i>Clostridiumz</i>	S. boulardii LGG	the result	
difficle infection (CDI)		is not significant.	
Resist recurrence of	S houlardii	Reduction of CDI	
after-treatment of CDI	S. boutaran	recurrence infection	
Eradication of Helicobacter pylori	Lactobacillus rhamnose GG S. boulardii	During treatment side effects improve the compliance. Effective role in	
Colitis ulcers	<i>E. coli</i> Nissle 1917	maintenance of remission.	
		Effective role in the	
	VSL	induction and	
		maintenance	
		of colitis ulcer.	

 TABLE 2.2: List of Different Strains of Probiotics Against Gastrointestinal Infectious Diseases [36].

Disease	Probiotics strain	Comment	
	Lactobacillus	No Role in	
Crobria diagona	$rhamnose\ GG$	Stimulation	
Cronn's diseases	Lactobacillus	and prolong	
	johnsonii LA1	remission of CD.	
T		Improve the	
Irritable bowel		enhancement	
syndrome	infantis	of IBS syndrome	
		Incidence of	
	Lactobacillus	infection	
Acute pancreatitis	plantarum	enhanced by the	
		PROTERIA trial	
	Bifidobacterium spp,		
Necrotizing	& Lactobacillus	the NEC and mortali	
enterocolitis (NCE)	a cid ophilus		
		Enhanced the	
		concentration of Ig	
Multiorgan dysfunction	VSL	and IgA but the mo	
syndrome (MODS)		are not affected \backslash	
		By Probiotics.	
Immune response	Lactobacillus	When they are give	
and allergy	$rhamnose \ GG$	to pregnant mother	
		decreased the	
	T . 1 . 11	atopic dermatitis	
Ventilator-associated	Lactobacillus	Probiotics also playe	
pneumonia (VAP)	rhamnose GG	an effective role	
		in the treatment of	
		(VAP).	

TABLE 2.2 :	List of Different	Strains of	of Probiotics	Against	Gastrointestinal			
Infectious Diseases [36].								

2.9.1 Antibiotics-Associated Diarrhea

The prevalence of antibiotic-associated diseases (AAD) ranges from 30% to 5% in the host. The risk of diseases increases by the amino penicillin therapies(Ampicillin or Amoxicillin) which is a combination of clindamycin, cephalosporin and clavulanic acid[37]. The alternative method to adopt to reduce the antibiotic associateddiseases (AAD) such as conjunction of probiotics with antibiotics have been studied on the adults and children. The major changes were observed after the conjunction of probiotics with antibiotics in the gut microbiota decreased the total number and diversity of bacteria such as Bifiobacteria and Bacteroides associated with amylolytic activity decreased and increase the number of facultative bacteria such as Clostridia, Fusobacteria and Eubacteria species [38].

The patients are treated with antibiotics curtains changes observed in the body such as decreased the production of short fatty acid chain and increased the proteolytic activity was noted [39]. Several clinical trials have been conducted using *Saccharomyces boulardii* how much they are effective for the prevention of AAD. After the clinical trial, it has been proved the *Saccharomyces boulardii* is acts as the most effective agent against the AAD [40-42]. Several years the trials were conducted on *Sacchromyces boulardiito* check the efficacy and the effectiveness of probiotics against the prevention of AAD. Randomized control trials on the Sacchromyces boulardii showed a 95% positive result agains the AAD prevention in the adult body [43].

2.9.2 Infections of *Clostridium difficile*

Clostridum difficile is a gram-positive bacterium, that is spore-forming which causes severe gastrointestinal infection with colitis and diarrhea. In the last few decades, *Clostridium difficile* infection CDI has been reported according to severity and incidence. The clinical result reported the CDI infection is asymptomatic mild diarrhea, pseudo membranous colitis. The infections of CDI is the most challenging aspects of diseases. According to recoded data 25% of patients of CDI that

have been treated with the metronidazole and vancomycin but after the 4 week the repeated symptoms of typically disease appears. Due to increasing numbers, frequent death rates and raising reappearance, there is a need for more effective prevention and treatment therapy against the CDI [44].

It proved Probiotics S. boulardii produces 54 KDa protease that acts as defensive against the C. difficile infection and degraded the A and B toxin which produces C. difficle infection and also degraded the colonial receptor site for C. difficle. The beneficial bacteria S. boulardii also enhanced the level of antibodies IgA level in the intestine that act as antitoxic secretory substance [45].

S. bulardii probiotic supplement that has been studied in the treatment and prevention of recurrence infection of Clostrium difficile. The study is based on the several randomized controlled trials of Saccharomyces boulardii or Lactobacillus spp combination of C. difficle toxin [42, 46-49]. Another randomized controlled trial was done on recurrent patients of CDI. Patients of CDI were given two doses in different concentration metronidazole (1g/d) and vancomycin (2g/d or 500mg/d) and S. boulardii (1g/d for 4 weeks).

The patients were treated with high doses of probiotics and vancomycin had significantly recurrence rates are reduced (16.7%) and that compared with the placebo and vancomycin (50%) [50]. The probiotics given in the low concentration dose with metronidazole or vancomycin did not show prominent effect against CDI.

S. boulradii only probiotic was shown effective protection against the recurrent infection of *Clostrium difficle* [51]. Probiotics are available in the market as in the form of capsule products such as *Sacchromyces boulardii* present in form of florastor capsules. *Lactobacillus spp* are also available in many other forms of different capsule product culturelle capsule, lactinex and fem-dophilus.

Align probiotics capsules, attune nutrition bars and adult formula CP-1 capsules are also present in the combination form of *Lactobacillus spp* and *Bifidobacterium spp*. There has been enhanced practice of using the probiotics combine with metronidazole and vancomycine for the prevention of recurrence CDI.
2.9.3 Helicobacter Pylori infections

The strong gastrointestinal infection bacteria *Helicobacter pylori*, morphological small curved spiral rod-shaped bacterium, this bacterium has strong relation with duodenal peptic ulceration. Helicobacterium pylori is the main infectious agent of causing gastric cancer and chronic gastritis as well as gastric malignancies. Recently therapy which is based on the eradication of this bacterium is a combination of proton pump inhibitors and antibiotics. In vitro study about probiotics showed maximum antimicrobial effect against the Helico bacterium pylori and resist the adherence of bacterium as well as probiotics enhanced the production of metabolites and antimicrobial molecules [52]. A randomized, double-blind, controlled trial was conducted on the 60, participants all were treated with Lactobacillus GG on day 1-14 and with antibiotic therapy on day 1-7 [52] [53]. Probiotics played a very effective role in the diagnosis of diseases and improved the symptoms such as taste disturbance, including nausea and diarrhea; however, eradication treatment did not significantly improve the epigastric pain. In another randomized, double-blind, trial was conducted on the infection patients of 85 H. pylori and these patients were treated with different amount of probiotics such as Lactobacillus acidophilus, Bifidobacterium lactis(group 3), Saccharomyces boulardii (group 2), Lactobacillus GG (group 1), on the days of 1-14, with H. pylori treatments on the day of 1-7 [54]. After the different trials of probiotic, it is proved that supplementation with S. boulardii in the treatment of H. pylori infection significantly reduced the adverse effects of therapy especially diarrhea and enhanced the eradication rate of disease [55].

2.9.4 Irritable Bowel Syndrome (IBS)

Intestinal bacteria that are called gut microbiota probiotics after the epidemiological, clinical and physiological studies have suggested the effective role against the pathogenesis of IBS. Many previous studies it is proved that gastroenteritis is one main reason for the IBS [56]. In the last two years, studies that continually raises the issue of gastroenteritis are directly related to developing the risk of IBS [57]. Physiological studies of humans and animals intestine are directly related to the active function of gut microbiota and alteration in the composition of gut microbiota showed a strong effect on the physiological function of the intestine and IBS [58].

The IBS risk enhanced by the following reason such as elevated luminal gas production, dysbiosis, gastroenteritis and gastrointestinal beneficial gut microbiota and immune activation act as the therapeutic role in IBS [59]. During the serious methodological flaws, various RCTs can check the efficacy of probiotics in IBS patients [60]. Recently Benner and colleague they were reported after the 16 RCT evaluation probiotics in the treatment of IBS, only *Bifidobacterium infantis* probiotics which played an effective role in the improvement of symptoms in the IBS patients [61].

After the detailed study, it is proved that beneficial probiotics played a beneficial impact on the global symptoms than on the flatulence and abdominal pain [62, 63]. In the market *Bifidobacterium infants* available as in the form of Align capsules or present with other probiotics in the form of OWP probiotics capsules and VSL³ packets [64].

2.9.5 Ventilator-Associated Pneumonia

Ventilator-associate pneumonia (VAP), is a more adverse form of pneumonia diseases that lead to serious complications in respiration after 48 hours of endo tracheal intubation, the patients shift to intensive care units in the US [65]. The patients of Ventilator-associated pneumonia stayed to remain in the ICU till than the normal function of the lungs started [66].

The patients who suffered in serious infection of pneumonia and gone to VAP the chances of death these patients raises 2 to 10 folds higher as compared to those patients who are mechanically ventilated [67, 68]. The pathogens which may be associated with VAP they are more complex and they have formed biofilms

with aerodigestive tract bacteria and release the contaminated secretion microaspiration [69, 70]. Raising the rate of resistance against the antibiotics has promoted the alternative method adapted for the treatments to prevent [71].

In the clinical trial, Forestier et al, using *Lactobacillus caseir hamnosus (Lcr35)* which are played an effective role in VAP in all of the probiotics groups as compared to placebo group (2.9% vs 7.5%). They are reduced the colonization rate of Pseudomonas aeruginosa in gastric as well in the respiratory tract [72].

2.9.6 Allergy and Enhancement of Immune Response

Current study based on the mucosal immunology which build the relation between microbes and host at the early stages when the immune system and mucosal barrier both are still immature [73]. Probiotics act as beneficial potential agent that increase the innate immunity and changes the pathogens inflammation via regulating toll-like receptor signaling pathways [74].

The mode delivery has a great impact on the composition of gut microbiota and also beyond immediate neonatal periods. The infant born delivery also regulate the effective role in the composition of gut microbiota the vaginally born infant and infant born by the cesarean section both have major difference of culture gut microbiota up to 6 months of age [75].

2.10 Safety Concerns with Use of Bacteria as Probiotics

New various evolutionary pressures the DNA of microbes kept changing, these changes are referred as genome plasticity [5]. This phenomenon arises from continuous changes including mutations especially point mutations and conversions, genetic rearrangements as a result of inversions and translocations, indels even insertions from other bacterial/ viral species such as conjugation plasmids, transposons, bacteriophage and many others. The genomic modifications result in adaptations and behavioral changes in bacterial species based on environmental pressures a specie encounter [18].

Pathogenicity islands and resistance islands are the regions of microbial genomes which possess genes encoding virulence factors and antibiotic resistance genes respectively. These genes are also present in bacterial species classified as potential probiotics.

These genes and their adaption are usually result of genome plasticity. As potential probiotic strain, bacterial species should not have any virulence gene and its should not possess ant antibiotic resistance gene while it should just have natural resistance mechanisms [21].

Probiotics are required to have specific characteristics properties which are encoded in their genes. Mining of bacterial genome for this characteristic is important but it is equally important to check that bacterial species do not posses any unwanted character. Genomic instability in probiotics could be detected by comparative genomic analysis [22]. Genomic stability of probiotic strain is always required to be assured and measures are required to be in place to avoid any mutation or variation [23].

2.11 Acid and Bile Tolerance

As probiotic bacteria are usually introduced through oral rout, therefore their ability to survive in harsh gastrointestinal environment is very important. These conditions involve very low pH, this strongly acidic condition do not allow most of bacteria to survive, similarly survival in presence of bile salts is another stress probiotic have to face. In order to be a potential probiotic bacterium should have gees responsible for tolerance against low pH, heat, cold, oxidative stress and osmosis. All commercially available strains including L. helveticus MTCC5463, cheese

starter DPC4571 and DPC5463 posses various genes for acid and bile tolerance [15,76].

2.12 Competitive Exclusion of Pathogens

In order to be a good probiotic candidate, a bacterium should have few genes which provide it with competitive advantage over pathogens, one of the mechanisms by which probiotics impart health benefits. In order to have competitive advantage bacteria should posses genes for bacteriocins or antimicrobial substances, betterment in the state of epithelial barrier, variations and activation of immune system and adhesion to epithelial wall. The potential is more enhanced if bacterium possess capabilities to produce compounds for coaggregation, aggregation and adhesion as well as biosynthesis pathways activation [12].

2.13 Adhesion

Adhesion to intestinal epithelium is the most important property after survival in gastrointestinal tract. Adhesion provides probiotic a potential and competitive advantage over pathogens. Host and probiotic bacterial interaction is dependent on adhesion related proteins. These proteins identify specific receptors in host epithelial cells and binds to them. The binding then activates innate responses including colonization. Adhesion process is mediated by fimbriae or pili present on bacterial surfaces. MSCRAMMs (Microbial Surface Components Recognizing Adhesive Matrix Molecules) also mediate in adhesion [21].

Potential probiotic characterization always involved the hunting of adhesion mediator genes such as *L. rhamnosus* possess spaCBA operon with sortase dependent pili and three secreted genes [22]. *B. coagulans HS243* posses eleven adhesion related genes including fibronectin binding proteins, enolase, flagellar hook associated proteins [77]. Detection of genomic islands using bioinformatics and computational pipelines reveals various potential genes [78].

2.14 Bacteriocin Production

The antagonism of probiotics against E.coli is well known and it was also known from very start that probiotics do this antagonism through certain antimicrobial compounds. Antimicrobial properties of dairy probiotics such as cheese, yogurt and fermented milk products, have long been known, but the concept of bacteriocin production is a bit new [24].

In 1993, first classification of bacteriocins was proposed [25] and after that various attempts have been made to reclassify them [18]. Bacteriocins are divided into four major classes where Class I comprise thermostable compounds also referred as lantibiotics, which which are produced mainly bt gram positive bacteria [79]. Class II includes bacteriocins slightly heavier than class I i.e 10KDa molecular weight and this class is further divided into various subclasses [25].

2.15 Immuno Modulation

Microbes or bacteria whenever enter mammalian body they trigger immune response. As bacteria especially pathogens and microflora have co evolved with mammalians including humans, they impart certain benefits to each other. Gut microbiota for example provides resistance against various diseases. The development of human immune system and its efficiency against diversified pathogens is an outcome of this evolution.

Probiotics have also shown a lot of potential in controlling diseases not only related to digestive tract or gastrointestinal tract but the spectrum goes ahead to neurodegenerative diseases and even cancer. Antibiotic resistance, drug side effects and lack of effective medicines, have shifted the focus on use of probiotic.

Gut microbiota especially in reference to probiotics, activate immune systems and make is stronger the evidence of which is provided by germ free animals who are more prone to develop not only diseases but also deficiencies [26][80]. _

$A kkermansia\ muciniphila\ {\it and}\ {\it its}\ {\it Potential}$ 2.16 as Probiotic

As discussed in Introduction section of this thesis, Akkermansia muciniphila and its potential as probiotic is debatable. Although Akkermansia muciniphila doesn't cause any disease, but some of its properties make its safety questionable. Table 2.3 Summarizes the Association of Frequency Distribution of Akkermansia muciniphila in human gut and the diseases state [76].

Sr. No.	Disease state	Analysis method	Obs. & Assoc.	Ref
1.	Type 2 diabetes	Metagenome	Frequency of A. muciniphila is less abundant in Diabetics	[31]
2.	Overweight and obese adults	Metagenomic analysis and real time PCR	Frequency of A. muciniphila is less abundant in obese patients	[32]
3.	Children with atopic diseases	Pyrosequencing	Frequency of A. muciniphila is less abundant in patients as a result decreased efficiency of immune system	[32]

TABLE 2.3: Correlation between Akkermansia muciniphila and Disease in Humans [78].

Sr. No.	Disease state	Analysis method	Obs. & Assoc.	Ref
4.	Outstanding athletes	16 r RNA sequencing	Frequency of A. muciniphila is more abundant in athletes and individuals with low BMI	[34]
5.	Overweight and obese adults	16S r RNA sequencing	No association found	[33]
6.	Autistic children	Real time PCR	Frequency of A. muciniphila is less abundant in autistic patients	[34]
7.	Appendicitis, IBD and other diseases	FISH (Fluorescence in situ hybridization)	Frequency of A. muciniphila is less abundant in appendicitis patients	[32]
8.	Overweight lactating women	Real time PCR	Frequency of A. muciniphila is more abundant in lactating overweight mothers	[33]

TABLE 2.3 :	Correlation	between	Akkermansia	muciniphila	and	Disease	in	Hu-
			mans $[78]$.					

Chapter 3

Material and Methods

Probiotic potential of any bacterial strain usually involves its isolation and characterization based on its capabilities of lysozyme tolerance, acid tolerance, antimicrobial activities, resistance to antibiotics, aggregation ability, antioxidant production, and hydrophobicity.

FIGURE 3.1: Summarizes the Methodological Steps used to Analyze Probiotic Potentials of Akkermansia muciniphila.

In this project we have used an insilico approach to determine the safety and then probiotic potential of *Akkermansia muciniphila*. The methodology used to analyze this bacterial strain is presented in Figure 3.1.

3.1 Genomic Data Collection

First step of methodology was to collect genomic data for analysis, this step comprises three sections i.e. selection of strains based on literature, retrieval of bacterial sequences from databases and selection of reference genome for further analysis [81]

3.1.1 Selection of Strains

Selection of strains was done based on literature survey, the source of literature was NCBI and PubMed. There are 138 genome sequences of *Akkermansia muciniphila* available at NCBI database, but most of them are either exist as scaffold or are incomplete. The ambiguity in source of isolation was another parameter considered, the strains with complete genome but ambiguous source of isolation were not considered. Total nineteen strains were selected based on complete genomic information as well as information regarding source of isolation. Annotated genomic sequences of these strains were retrieved from NCBI databases.

3.1.2 Retreival of Bacterial Sequences

Genomic data is retrieved from NCBI (National center for biological information) database (https://www.ncbi.nlm.nih.gov/genome). Both nucleotide and protein sequences data is retrieved to be used for further analysis. A total of nineteen strains are selected to be used in this study. All the genomes are annotated through RAST [82]. Further, Genome sizes, G + C content, average number of genes, coding DNA sequences (CDS) and other general features are compared to see the

variations between strains. The RAST annotation facilitates to determine the features, assigned to subsystems and help to check the presence in all organisms.

3.1.3 Selection of Reference Strain

The availability of nearly complete *Akkermansia muciniphila* genomes are useful to define the core, accessory and unique genomic features for all the strains. The comparison of strain ATCC BAA-835 with other strains of probiotic, and pathogenic strains, facilitates to find core genes, accessory and unique genes. The genome of *Akkermansia muciniphila* ATCC BAA-835 is used as reference strain [83].

3.1.4 Quality Assessment

Strains of *Akkermansia muciniphila* were selected from NCBI and quality assessment check by CheckM and Patric Databases (https://www.patricbrc.org/). All strains were human and complete genome and quality was good.

3.2 Bacterial Pan-Genome Analysis

Pangenome is total or entire gene set of a particular genus or population under study, using all the available genomes of that genus or population. In order to identify strain-specific genomic features in a genome and determine the genomic diversity among the *Akkermansia muciniphila* strains, the computational pipeline BPGA tool was used [84]. The fundamental purpose of pangenome profile analysis to determine the frequency distribution of the selected strains which in this case are 19*Akkermansia muciniphila* starins. The full GenBank files of all selected genomes were downloaded from NCBI to be used as input for the BPGA analysis. BPGA further processed these files for orthologous cluster analysis and generated an input file containing a total of 4933 annotated genes. In BPGA core, Accessory and unique gene families were identified using pangenome sequence extraction module. Homologous gene families which were unique to a particular strain were extracted using exclusive gene family analysis module. The pan-genome functional analysis module was used to find the Clusters of Orthologous Groups of proteins (COGs) and KEGG pathway distribution. Evolutionary analysis done by BPGA was based on concatenated core gene alignment using a binary pan-matrix file that depicts the presence or absence of the genes

3.2.1 Comparative Analysis of Orthologous Genes

Comparative analysis of core genes to detect the presence of single copy genes and multiple copy genes in all selected nineteen strains was performed using OrthoMCL(https://orthomcl.org/orthomcl/). A particular Cluster of Orthologous genes is a group of genes which have evolved together and are evolutionary counterparts or orthologues. Within the Clusters of Orthologous Gene (COG), clusters including DNA replication, transcription and translation, metabolism, growth and stress response, there is a long list of functional categories of these core genes. These categories were analyzed using webMGA server. (http://weizhonglab.ucsd.edu/webMGA). This analysis was done to provide insights into the diversity of genes within a particular COG category, i.e. similarity between core genes annotation. These accessory genes analysis was also helpful to understand the subsystems as well as the abundance of these genes among various groups. In this way we can identify important unique genes and their characteristic role within a particular strain.

3.2.2 Phylogenetic Analysis

Evolutionary trees are constructed based on similarities and differences among gene sequences. Although these trees are predictions not a definitive fact but they provide information related to the evolution from common ancestor. These trees could be constructed using methods which involve construction using wholegenome methods or concatenated single gene sequence. BPGA tool was used to construct Phylogenetic Tree [84].

3.3 Antibiotic Resistance (Resistome) Determinants

Antibiotic resistance is one of the characteristics which is favorably required to be present in a probiotic. Intrinsic resistance to antibiotics provides capabilities to probiotic strains to regain their abundance in gut after the use of antibiotics against pathogens. On the other hand, the resistance against antibiotics in bacterial species is a global concern. Screening of probiotic bacteria for antibiotic resistance genes ensures their safety to be used as probiotics so that they cannot transfer these resistance genes to other bacteria through horizonal gene transfer mechanisms. Comprehensive Antibiotic Resistance Database CARD, (https://card.mcmaster.ca/analyze/rgi), is a database used for screening of antibiotic resistance determinants. The database was used to identify that either a particular strains harbors gene for resistance against various drugs as well compare and evaluate the differences [85].

3.4 Virulence Factors

The capability of a particular bacterial strain to cause disease is referred as its pathogenicity, while the severity of damage or disease it will cause is its virulence. Molecules which enhance the capability and severity of diseases causing abilities in a bacterial strain are called virulence factors. These factors include the molecules/proteins which enable bacteria to adhere and colonies, evade host immune system and many more. A potential probiotic strain should not possess these genes. Virulence Factor of Bacterial Pathogens Database VFDB(http://www.mgc. ac.cn/VFs/) is used to confirm the presence of putative virulence genes [86].

3.4.1 Genomic Islands Determination

Horizontal gene transfer results in formation of clusters of genes referred as Genomic Islands. Horizontal gene transfer could be outcome of any mechanisms including transposons, bacteriophages or plasmids. As these clusters were first studied in pathogenic bacteria therefore were referred as Pathogenicity Islands. Now a days they are usually referred with reference to property they impart such as Metabolic Islands, symbiosis Islands, Antibiotic resistance islands and so on. As these Islands are acquired by Horizontal gene Transfer therefore their presence may variate among closely related strains of same or different species. Island-Viewer4 (https://www.pathogenomics.sfu.ca/islandviewer/) is a tool which utilizes three prediction algorithms including SIGI-HMM, IslandPath-DIMOB, and Island-Pick. Bacteriocin Production and Bioactive Islands were determined using online data base BAGEL [87].

Chapter 4

Result and Analysis

Akkermansia muciniphila, is a member of normal gut microbiota, which is reported to have positive impacts on health in obese patients. These positive impacts make it a potential probiotic to be used against obesity. Although the bacterium is not directly involved in causing any diseases but certain properties it possesses creates a debate on its safe use. The thesis is designed as an attempt to analyze various genetic properties of Akkermansia muciniphila to evaluate its potential to be used as probiotic.

4.1 Genomic Data Collection

Akkermansia muciniphila, is a common inhabitant of mammalian gut, and is reported to have 138 different strains isolated from various sources. Some of these strains are sequences and whole genome annotated sequences are available.

4.1.1 Selection Of Strains

For this project first step was to select an inclusion and exclusion criteria for selection of bacterial strains, all the strains with complete genomic sequence available along with a known source of isolation were selected. Nineteen bacterial strains isolated from humans which had complete whole genome annotated sequences were selected. Table 4.1 summarizes the details of selected strains of *Akkermansia muciniphila* selected for further analysis. Selected strains were verified using literature analysis and their genomic properties were analyzed. The whole genome sequences of all 19 strains were downloaded from NCBI database [88].

TABLE 4.1: List of Selected Strains After Literature Review, Strains were Selected Based on Availability of Complete Genome and Information Related to Source of Isolation.

S. No	Genome Name	Genome ID	Source of isolation	Genome Status
	Refrence Strain			
1	A. muciniphila	349741.6	Human Feces	Complete
	ATCCBAA-835			
9	A. muciniphila	220025 2050	и п	1 (
2	CBA5201	239935.2076	Human Feces	complete
0	A. muciniphila	020025 0121	faaaa	
3	DSM 22959	239935.2131	IECES	complete
4	A. muciniphila	220025 2120	Uuman facas	complete
4	JCM 30893	239933.2189	numan ieces	complete
Б	A. muciniphila	220025 264	Korean Adult	Complete
9	AMDK-7	239933.204	Feces	Complete
6	A. muciniphila	230035 265	Korean Adult	Complete
0	AMDK-8	233333.200	Feces	Complete
7	A. muciniphila	230035 255	Korean Adult	Complete
1	AMDK-10	200000.200	Feces	Complete
8	A. muciniphila	239935 256	Korean Adult	Complete
0	AMDK-11	200000.200	Feces	Complete
9	A. muciniphila	239935 257	Korean Adult	Complete
0	AMDK-12	200001201	Feces	Compione
10	A. muciniphila	239935.266	Korean Adult	Complete
± v	AMDK-13	200000.200	Feces	Compiete

11	A. m AN	uciniphila IDK-14	239935.258	Korean Adult Feces	Complete
12	A. m [*] AN	uciniphila IDK-15	239935.267	Korean Adult Feces	Complete
13	A. m AN	uciniphila IDK-16	239935.262	Korean Adult Feces	Complete
14	A. m AN	uciniphila IDK-17	239935.263	Korean Adult Feces	Complete
15	A. m AN	uciniphila IDK-18	239935.259	Korean Adult Feces	Complete
16	A. m AN	uciniphila IDK-19	239935.26	Korean Adult Feces	Complete
17	A. m ^a AN	uciniphila IDK-20	239935.268	Korean Adult Feces	Complete
18	A. m	uciniphila	239935.269	Korean Adult	Complete
	AN	IDK-21		reces	
19	AN A. m AN	IDK-21 uciniphila IDK-22	239935.261	Feces Korean Adult Feces	Complete
19 S.	AN A. m AN Genome	IDK-21 uciniphila IDK-22	239935.261 GenBank	Feces Korean Adult Feces No of	Complete No of
19 S. No.	AN A. m AN Genome length	IDK-21 uciniphila IDK-22 GC content	239935.261 GenBank Accession	Korean Adult Feces No of proteins	Complete No of RNAs
19 S. No.	A. m A. m AM Genome length 2664102	IDK-21 uciniphila IDK-22 GC content 55.82311	239935.261 GenBank Accession CP001071	Korean Adult Feces No of proteins 2498	Complete No of RNAs 62
19 S. No. 1 2	A. m A. m AM Genome length 2664102 2819944	IDK-21 uciniphila IDK-22 GC content 55.82311 55.323246	239935.261 GenBank Accession CP001071 CP033388	Korean Adult Feces No of proteins 2498 2336	Complete No of RNAs 62 62
19 S. 1 2 3	A. m A. m AM Genome length 2664102 2819944 2819944	IDK-21 uciniphila IDK-22 GC content 55.82311 55.323246 55.762352	239935.261 GenBank Accession CP001071 CP033388 CP042830	FecesKorean AdultFecesNo ofproteins249823362109	Complete No of RNAs 62 62 62 62
19 S. 1 2 3 4	A. m A. m AM Genome length 2664102 2819944 2819944 2819944	IDK-21 uciniphila IDK-22 GC content 55.82311 55.323246 55.762352 55.637306	239935.261 GenBank Accession CP001071 CP033388 CP042830 AP021898, AP021899	Feces Korean Adult Feces No of proteins 2498 2336 2109 2252	Complete No of RNAs 62 62 62 62 62
19 S. 1 2 3 4 5	A. m A. m AN Genome length 2664102 2819944 2819944 2819944 2819944	IDK-21 uciniphila IDK-22 GC content 55.82311 55.323246 55.762352 55.637306 55.29845	239935.261 GenBank Accession CP001071 CP033388 CP042830 AP021898, AP021899 CP025823	Feces Korean Adult Feces No of proteins 2498 2336 2109 2252 2212	Complete No of RNAs 62 62 62 62 62
19 S. 1 2 3 4 5 6	A. m A. m AM Genome length 2664102 2819944 2819944 2819944 2819944	IDK-21 uciniphila IDK-22 GC content 55.82311 55.323246 55.762352 55.637306 55.29845 55.392254	239935.261 GenBank Accession CP001071 CP033388 CP042830 AP021898, AP021899 CP025823 CP025824	Feces Korean Adult Feces No of proteins 2498 2336 2109 2252 2212 2150	Complete No of RNAs 62 62 62 62 62 62 62 62
19 S. No. 1 2 3 4 5 6 7	A. m A. m AM Genome length 2664102 2819944 2819944 2819944 2819944 2819944	IDK-21 uciniphila IDK-22 GC content 55.82311 55.323246 55.762352 55.637306 55.29845 55.392254 55.392254 55.24988	239935.261 GenBank Accession CP001071 CP033388 CP042830 AP021898, AP021899 CP025823 CP025824 CP025825	Feces Korean Adult Feces No of proteins 2498 2336 2109 2252 2212 2150 2260	Complete No of RNAs 62 62 62 62 62 62 62 62 62 6
19 S. No. 1 2 3 4 5 6 7 8	A. m A. m AM Genome length 2664102 2819944 2819944 2819944 2819944 2819944 2819944 2819944	IDK-21 uciniphila IDK-22 GC content 55.82311 55.323246 55.762352 55.637306 55.29845 55.392254 55.392254 55.24988 55.25507	239935.261 GenBank Accession CP001071 CP033388 CP042830 AP021898, AP021899 CP025823 CP025824 CP025825 CP025826	Feces Korean Adult Feces No of proteins 2498 2336 2109 2252 2212 2150 2260 2218	Complete No of RNAs 62 62 62 62 62 62 62 62 62 6
19 S. No. 1 2 3 4 5 6 7 8 9	A. m A. m AM Genome length 2664102 2819944 2819944 2819944 2819944 2819944 2819944 2819944 2819944	IDK-21 uciniphila IDK-22 GC content 55.82311 55.323246 55.762352 55.637306 55.29845 55.392254 55.392254 55.24988 55.25507 55.255096	239935.261 GenBank Accession CP001071 CP033388 CP042830 AP021898, AP021899 CP025823 CP025824 CP025825 CP025826 CP025827	Feces Korean Adult Feces No of proteins 2498 2336 2109 2252 2212 2150 2260 2218 2191	Complete No of RNAs 62 62 62 62 62 62 62 62 62 6

11	2819944	55.25402	CP025829	2198	62
12	2819944	55.30021	CP025830	2352	62
13	2819944	55.30107	CP025831	2203	62
14	2819944	55.301273	CP025832	2208	62
15	2819944	55.30088	CP025833	2208	62
16	2819944	55.31754	CP025834	2195	62
17	2819944	55.317074	CP025835	2135	62
18	2819944	55.315376	CP025836	2112	62
19	2819944	55.315674	CP025837	2210	62

4.1.2 Selection of Reference Genome

A nucleotide sequence assembly used as representative example of genes present in a particular bacterial species is referred s reference genome. These reference genomes act as guide for annonation and assembly of new genomes.

FIGURE 4.1: Circular Genomic View of Akkermansia muciniphila Strain ATCC BAA-835 along with Major Genomic Regions.

NCBI hosts a database for reference sequences. In case of Akkermansia muciniphila, strain ATCC BAA-835is often used as reference strain. A circular genome of this strain comprises 2664102 bp of nucleotides. Average GC content of the strain is 55.8% (Table 4.1) with total 88.8% of coding genome making predicted protein coding genes number of 2176 genes. Out of these protein coding genes 65% (1408) genes are assigned with a functional role while 35% (768) genes are hypothetical genes and 1.7 % (38) are classified as pseudogenes. Figure 4.1 shows the circular genome diagram as well as few genomic features.

4.1.3 Gene Prediction and Annotation

Gene prediction and annotation was performed by using Rapid Annotations using Subsystems Technology (RAST), online freely available tool. This online tool provides accession number that is a unique identification of every sequence. By submitting sequence in FASTA format, it provides size, GC%, No. of contigs, No. of Coding Sequences of strains. Table 4.2 summarizes the findings of Genome Annotation using RAST server Organism Genes Genes of known or predicted molecular function Protein-coding Genes tRNA genes rRNA genes Pseudo- genes Genes of unknown molecular function

S.No	Organism	Genes	Genes of predicted molecular function	Protein coding Genes
1	A. muciniphila $\Delta TCC BAA 835$	2310	919	2246
2	ATCC BAA-855 A. muciniphila CBA5201	2373	543	2308
3	A. muciniphila DSM22959	2379	703	2315
4	A. muciniphila JCM30893	2379	524	2220
5	A. muciniphila AMDK-7	2316	559	2251

 TABLE 4.2: Summarizes the Findings of Genome Annotation Using RAST

 Server

A. muciniphila AMDK-15

6	A. muciniphila AMDK-8	2327	700	2263
7	A. muciniphila AMDK-10	2282	670	2218
8	A. muciniphila AMDK-11	2257	703	2193
9	A. muciniphila AMDK-12	2257	706	2193
10	A. muciniphila AMDK-13	2269	659	2205
11	A. muciniphila AMDK-14	2265	693	2201
12	A. muciniphila AMDK-15	2277	536	2213
13	A. muciniphila AMDK-16	2258	704	2194
14	A. muciniphila AMDK-17	2271	538	2207
15	A. muciniphila AMDK-18	2277	539	2213
16	A. muciniphila AMDK-19	2204	695	2140
17	A. muciniphila AMDK-20	2214	684	2150
18	A. muciniphila AMDK-21	2222	676	2158
19	A. muciniphila AMDK-22	2194	680	2130

S No	Organism	tRNA	rRNA	Pseudo	unknown
5.140	Organishi	genes	genes	genes	molecular
					function
1	A. muciniphila	50	0	0	1301
T	ATCC BAA-835	52	9	9	1591
2	A. muciniphila CBA5201	53	9	29	1830
3	A. muciniphila DSM22959	52	9	37	1676
4	A. muciniphila JCM30893	52	9	30	1732
5	A. muciniphila AMDK-7	53	9	43	1757
6	A. muciniphila AMDK-8	52	9	43	1627
7	A. muciniphila AMDK-10	52	9	113	1612
8	A. muciniphila AMDK-11	52	9	38	1554
9	A. muciniphila AMDK-12	52	9	34	1551
10	A. muciniphila AMDK-13	52	9	107	1610
11	A. muciniphila AMDK-14	52	9	51	1572

Genes of

13	A. muciniphila AMDK-16	52	9	56	1554
14	A. muciniphila AMDK-17	52	9	53	1733
15	A. muciniphila AMDK-18	52	9	55	1738
16	A. muciniphila AMDK-19	52	9	44	1509
17	A. muciniphila AMDK-20	52	9	55	1530
18	A. muciniphila AMDK-21	52	9	66	1546
19	A. muciniphila AMDK-22	52	9	75	1514

As for the project the selection criteria were to select the annotated complete genomes, but annotation was performed again with RAST server to attach significant functional information with genomes. RAST, stands for Rapid Annotation using Subsystem Technology, is standard software pipeline established in 2008 for annotation of bacterial and archaeal species. Annotation was performed to identify the gene coding region and out of this region, the focus has been on the genes which have a known function. For this project, the pseudogenes as well as hypothetical genes were not taken into account. Similarly, genes encoding tRNA and rRNA were also not considered further. Convenience, consistency and speed of analysis are three major features of RAST for which this server was used to identify the protein coded regions in all the selected nineteen genomes.

4.2 Pan Genome Analysis

With the advent of next generation high throughput technologies in genomics, the focus has analysis shas shifted from one isolate to a complete/ entire picture from all reported strains. Therefore, we can say that we have shifted from genome to genomics. Pan genomics is one of the emerging Omics techniques where instead of analyzing genes present in single genome, the concept is to analyze the entire set of genes from bacterial population under study. In pangenome analysis, genes present in all the bacterial strains is referred as 'core genome', gene set present in few bacterial species is referred as 'dispensable genome' and gene set present in

only one bacterial species is referred as 'Unique genome'. 'Accessory genome' also referred as 'variable genome' is the set of genes which is not present in all strains, comprising dispensable and unique genome sets.

For the selected nineteen strains of *Akkermansia muciniphila* BPGA i.e. Bacterial Pan Genome Analysis Algorithm was used. BPGA is a step by step bioinformatics pipeline which analysis pangenome using core genome modules. The process starts with the input of data file, the input files could be in three formats GenBank file, NCBI FASTA format File, Protein Sequence file. The file format could be chosen as per analysis requirements. The tool can also process tab delimited binary files retrieved from another tool for pan genome analysis.

The strategy used for this thesis was all against all comparisons in all nineteen selected genomes instead of using sequence comparison against reference genome. To identify core and variable genomes all selected nineteen strains, whole genome sequences in NCBI format were used. Whole genome sequences were downloaded from NCBI Genome Database and BPGA file was generated as initial input file preparation process. This BPGA generated file comprised 4933 sequences of from all selected strains and this file with annotated sequences was later used as an input file for clustering. BPGA has three different tools options for clustering including Ortho MCL, CD-HIT and USEARCH. BPGA in default uses USEARCH but for this project we used all three available options in parallel to validate clustering.

All nineteen selected strains of *Akkermanisa muciniphila* were analyses and to fined core and pan genome, it was found that all selected strains share 1035 genes making core genome. The gene accumulation curve shown in Figure 4.2 indicate that as we add a new strain in analysis there is decrease in number of core genome. Similarly, the pan genome depicts an increase as number of genes with addition of each strain. This increasing trend in pan genome indicates that *Akkermanisa muciniphila* is an open genome where each strain has quite a high number of unique genes, we can conclude from this trend that with each strain number of unique genes are added to pangenome. In all strains under study, total of 1489 unique

FIGURE 4.2: Gene Accumulation Curve of All Selected Strains, the Curve in Purple Indicates Core Genome and the Trend Indicates that the Number of Core Genes Decrease with Addition of New Strain. The curve in Orange Color Indicates that Pangenome which Show the Trend of Increase in Pangenome with Addition of Each Strain.

protein coding genes were found which is one third of average protein coding genes number in all selected strains.

FIGURE 4.3: The Pan Genome Profile Trends Obtained using BPGA, Pangenome is Indicated by Cyan Color and Show an Increasing Trend, While Pink Color Show Core Genome Depicted a Decrease with Addition of Each Strain.

The number of unique genes which is quite high in case of Akkermansia muciniphila strains under study. Out of 1489 genes 1322 genes were strain specific genes and the remaining were additional accessory genes present in few strains as well. The high number of variable genomes indicates that horizontal gene transfer is quite frequent phenomenon in Akkermansia muciniphila. the reason for this could be the variation in environments from where strains were isolated. Although in inclusion criteria, strains were selected to be from humans, but as the gut microbiome depends a lot on the type of food habits an individual possesses. Similarly, the health status and the use of antibiotics also imparts a stress and makes a bacterium to uptake new genes. As gut is quite a crowded area therefore, we can predict that the genes acquired not only from other strains but also from other species based on the stress and available neighborhood. Figure 4.3, show core and accessory genome of all 19 selected strains and validate the curves obtained in Figure 4.2. Table 4.3 indicates observations against each strain.

S no.	organisms	No. of core genes	No. of accessory genes	No. of unique genes
1	A. muciniphila _ATCC_BAA_835	1489	615	6
2	A. muciniphila CBA5201	1489	601	222
3	A. muciniphila DCM22959	1489	604	3
4	A. muciniphila JCM30893	1489	653	194
5	A. muciniphila AMDK-7	1489	538	202
6	A. muciniphila AMDK- 8	1489	671	83
7	A. muciniphila AMDK- 10	1489	609	45
8	A. muciniphila AMDK-11	1489	687	0
9	A. muciniphila AMDK-12	1489	692	4
10	A. muciniphila AMDK-13	1489	624	34
11	A. muciniphila AMDK- 14	1489	666	9
		1100	000	0

TABLE 4.3: Information about Core, Variable and Unique genes.

12	A. muciniphila AMDK-15	1489	671	14
13	A. muciniphila AMDK-16	1489	683	7
14	A. muciniphila AMDK-17	1489	681	10
15	A. muciniphila AMDK-18	1489	679	10
16	A. muciniphila AMDK-19	1489	680	10
17	A. muciniphila AMDK- 20	1489	627	6
18	A. muciniphila AMDK-21	1489	605	15
19	A. muciniphila AMDK-22	1489	596	12
Sno	Organisms	No. ofexcl.	Accessory	Unique
5 110.	Organishis	absent genes	Gene $\%$	genes $\%$
1	A. muciniphila	3	41 30289	0 402955003
T	ATCC_BAA_835	0	41.00205	0.402000000
2	A. muciniphila CBA5201	24	40.36266	14.90933512
3	A. muciniphila DCM22959	1	40.56414	0.201477502
4	A. muciniphila JCM30893	11	43.85494	13.02887844
5	A. muciniphila AMDK-7	16	36.13163	13.56615178
6	A. muciniphila AMDK- 8	3	45.0638	5.57421088
7	A. muciniphila AMDK- 10	47	40.89993	3.022162525
8	A. muciniphila AMDK-11	2	46.13835	0
9	A. muciniphila AMDK-12	1	46.47414	0.268636669
10	A. muciniphila AMDK-13	43	41.90732	2.283411686
11	A. muciniphila AMDK-14	7	44.72801	0.604432505
12	A. muciniphila AMDK-15	6	45.0638	0.940228341
13	A. muciniphila AMDK-16	6	45.86971	0.470114171
14	A. muciniphila AMDK-17	3	45.73539	0.671591672
15	A. muciniphila AMDK-18	3	45.60107	0.671591672
16	A. muciniphila AMDK-19	3	45.61107	0.671591572
17	A. muciniphila AMDK- 20	7	42.1088	0.402955003
18	A. muciniphila AMDK-21	15	40.6313	1.007387508
19	A. muciniphila AMDK-22	14	40.02686	0.805910007

For further validation of pangenome analysis, Roary was used with the parameter of 90% BLAST p percentage identidity cuttoff. This tool clustered the genes further into hard core and soft core genes. Similarly Accessory genes are categorised as shell and cloud genomes. In case of *Akkermansia muciniphila* under study more than 99% of genes were classified as hard core while 95-99 % could be easily categorized as soft core. Shell genes were 15-95 % while cloud genes were less than 15 %. Figure 4.4 and Table 4.4 summarizes the results of Roary analysis [89].

FIGURE 4.4: Information About Core Accessory Unique Genes from Roary

TABLE 4.4: Results fr	rom Roary f	for Pangenome .	Analysis
-----------------------	-------------	-----------------	----------

Core genes	(99% < strains < 100%)	1418
Soft core genes	(95% < strains < 99%)	175
Shell genes	(15% < strains < 95%)	1407
Cloud genes	(0% < strains < 15%)	1933
Total genes	(0% < strains <= 100%)	4933

4.2.1 Exclusive Gene Family Analysis

In order to find genes which are exclusively present in a particular strain or are unique genes, a special feature of BPGA referred as 'Exclusive Gene Family Analysis' is used. Figure 4.5 summarizes the frequency of singletons or unique genome of each strain [90].

Number of New Genes

FIGURE 4.5: Number of New Genes or Unique Genes Added to Pangenome with Addition of Each New Strain in Pan Genomic Analysis

4.2.2 Sequence Extraction

For further analysis protein sequences and genome sequences were required therefore protein sequences of all core, unique and accessory genes were extracted as FASTA files using a special module of BPGA referred as 'Pan Genome Sequence Extraction'.

4.2.3 Phylogenetic Analysis

Phylogenetic analysis provides as insight into the diversity of strains under study. To construct phylogenetic tree BPGA can help to construct three different types of trees based on insilico Multi Locus Sequence Tags (MLST), or based on concatenated core gene alignment, or based on pan-matrix. The phylogenetic tree of all 19 strains was constructed using USEARCH clustering module. Figure 4.6 show phylogenetic tree constructed using BPGA.

FIGURE 4.6: Phylogenetic Tree of All Selected Strains

4.2.4 Clusters of Orthologous Genes

Cluster of orthologous genes (COG) is a collection of genes from various organisms with common ancestors. COG analysis is one of the most important analysis after pan genome analysis to comprehend what role core and especially unique genes play in a particular organism. For COG analysis of all selected strains 'Pan Genome Functional Analysis' module of BPGA was used. The module uses COG function and KEGG pathway mapping for the given protein sequences (retrieved from BPGA earlier section 4.2.2) representing core and accessory genome. Figure 4.7 represents COG and distribution of core, accessory and unique genomes.

FIGURE 4.7: Clusters of Orthologous Groups (COG) and Distribution of the Core Genes, Accessory Genes and Unique Genes in Akkermansia muciniphila Strains.

The distribution pattern of COG depicts that most of core genes are involved in 'translation, ribosomal structure and biogenesis', 'cell wall, membrane, envelope biogenesis' and then 'carbohydrate, transport and metabolism'. On the other hand, most of the genes from accessory genome are related with 'Transcription, Replication, Recombination and Repair' then another cluster of 'Cell wall, membrane and envelope biogenesis'.

For pathway mapping, BPGA could map 1218 gene clusters out total 2790 gene clusters making 43.7% with KEGG pathways. BPGA used USEARCH, CD-HIT, and OrthoMCL tools for clustering and indicated that most of the pathways were related with metabolism. These core and accessory gene distribution among various clusters was validated by comparing our results with Clusters of Orthologous Groups Database.

In this database a difficulty was faced related to available data. Most of the genes of *Akkermansia muciniphila* were not available indicating that less data is available for this bacterium. As depicted in Figure 4.8 most of core genes are associated with metabolism, cell wall biogeneiss and process of transcription and translation indicating that these processes are conserved in all strains

COG Distribution

FIGURE 4.8: Distribution of the Core genes, Accessory Genes and Unique Genes Involve in Different Processes in Akkermansia muciniphila Strains.

4.2.5 Determination of Genetic Islands

Most of the adaptive characters of a bacterium are located in close proximity of each other in prokaryotic genome. This is often an indication of horizontal gene transfer, as well as it provides significance in expression of these adaptive traits. Genomic islands are usually characterized based on the adaptive advantage they provide. In this project antibiotic resistance Islands and pathogenicity islands were analyzed Results of which are summarized in Table 4.5. Presence of Bacteriocin production gene and pathogenicity islands were also predicted [91].

Organism	Category	Gene	Drug Class
	Antibiotic Efflux, Resist. in	adaf	Tetracyclin,
AICC DAA-055	Cell Division	ader	Fluoriquinolone
	Antibiotic Efflux, Resist. in	adaf	Tetracyclin,
AMDK-0	Cell Division	ader	Fluoriquinolone
AMDE 7	Antibiotic Efflux, Resist. in	adaf	Tetracyclin,
AMDK-1	Cell Division	ader	Fluoriquinolone
AMDE 10	Antibiotic Efflux, Resist. in	adaf	Tetracyclin,
AMDK-10	Cell Division	ader	Fluoriquinolone
	Antibiotic Efflux, Resist. in	adaf	Tetracyclin,
AMDK-11	Cell Division	ader	Fluoriquinolone
AMDE 19	Antibiotic Efflux, Resist. in	- J-f	Tetracyclin,
AMDK-12	Cell Division	ader	Fluoriquinolone
AMDIZ 19	Antibiotic Efflux, Resist. in	a d a f	Tetracyclin,
AMDK-13	Cell Division	adei	Fluoriquinolone
AMDK-14	Antibiotic Efflux, Resist. in	a d a f	Tetracyclin,
	Cell Division	ader	Fluoriquinolone
			Marcolide,
AMDK-15	$23~\mathrm{S}$ rRNA methyletransferase	ErmB	Lincosamide,
			Streptogramin

TABLE 4.5: Antibiotic Resistance Genes through CARD Analysis

			Tetracyclin,
AMDK-16	Antibiotic Efflux, Resist. in	adaf	Fluoriquinolone
	Cell Division	Emp D	Marcolide,
	$23~\mathrm{S}$ rRNA methyletransferase	ETIID	Lincosamide,
			Streptogramin
			Tetracyclin,
	Antibiotic Efflux, Resist. in	adaf	Fluoriquinolone
AMDK-17	Cell Division	Emp D	Marcolide,
	$23~\mathrm{S}$ rRNA methyletransferase	EIIID	Lincosamide,
			Streptogramin
AMDK 18	Antibiotic Efflux, Resist. in	adof	Tetracyclin,
AMDIC-10	Cell Division	auci	Fluoriquinolone
AMDE 10	Antibiotic Efflux, Resist. in	adaf	Tetracyclin,
AMDK-19	Cell Division	ader	Fluoriquinolone
AMDK 90	Antibiotic Efflux, Resist. in	adaf	Tetracyclin,
AMDK-20	Cell Division	ader	Fluoriquinolone
AMDE 91	Antibiotic Efflux, Resist. in	adaf	Tetracyclin,
AMDK-21	Cell Division	ader	Fluoriquinolone
AMDK-22	No data available		
AMDK 20002	Antibiotic Efflux, Resist. in	adaf	Tetracyclin,
AMDK-30893	Cell Division	ader	Fluoriquinolone
CBA 591	Antibiotic Efflux, Resist. in	adaf	Tetracyclin,
	Cell Division	ader	Fluoriquinolone
	Rociet	Identity of	Identity of
Organism	mechanism	matching	Reference
	meenamsm	region	Region
ATCC BAA-835	Antibiotic efflux	41.27	99.72
AMDK-8	Antibiotic efflux	41.27	99.72
AMDK-7	Antibiotic efflux	41.36	99.72
AMDK-10	Antibiotic efflux	41.42	99.72
AMDK-11	Antibiotic efflux	41.45	99.72

AMDK-12	Antibiotic efflux	41.45	99.72
AMDK-13	Antibiotic efflux	41.45	
AMDK-14	Antibiotic efflux	98.37	98.79
AMDK-15	Antibiotic Target Alteration	98.37	98.79
AMDK 16	Antibiotic efflux Antibiotic	41.52	114.26
AMDK-10	Target Alteration	98.37	98.79
AMDK 17	Antibiotic efflux Antibiotic	41.55	99.72
AMDK-17	Target Alteration	98.37	98.79
AMDK-18	Antibiotic efflux	41.55	99.72
AMDK-19	Antibiotic efflux	41.55	99.72
AMDK-20	Antibiotic efflux	41.36	99.72
AMDK-21	Antibiotic efflux	41.36	99.72
AMDK-22			
AMDK-30893	Antibiotic efflux	41.36	99.72
CBA-521	Antibiotic efflux	41.27	99.72

Table 4.5 is compiled from the results of CARD database which clearly indicates that all the selected strains of *Akkermansia muciniphila* possess some antibiotic resistance against first grade antibiotics but they do not show any indication of antibiotic resistance against all antibiotics or in other words, Multi Drug Resistance. Hence in this regard they are safe to be used as probiotics. Probiotic bacteria are part of normal gut microflora and intrinsic resistance to certain very commonly exposed antibiotics, problem arises if these strains develop resistance against most of the antibiotics and become resistant microbe or pathogen. In case of *Akkermansia muciniphila*, it is observed that all the selected strains are found resistance to commonly used antibiotics (which in one way is essential to keep the gut microbial composition), the genes encoding the resistance against these antibodies is present on mobile elements or plasmid, that indicates that bacteria especially all commensal bacteria in a common environmental niche share these antibiotic resistance. Most of the accessory genes, which are acquired by the microbial strain to carry on life activities in a better way, in other words adaptive advantages, are acquired through horizontal gene transfer and they reside and move as a block referred as genomic island. As these are adaptive genes therefore it is always essential to analyses that what type of genes it possesses. Based on the type of genes, genetic islands are classified as pathogenicity islands, symbiosis islands, metabolic islands, resistance islands and fitness islands. In vase of *Akkermansia muciniphila*, pathogenicity islands were searched and no pathogenic gene was found all of the selected strains but in order to ensure not only the safety but the bacteriocin production capacity, all strains were analyzed through Island Viewer and BAGEL. Details of each starin are as follows

4.2.6 Akkermansia muciniphila ATCC BAA-835

Figure 4.9 Indicates the presence of Genomic islands in *Akkermansia muciniphila* ATCC BAA-835.

FIGURE 4.9: Genetic Islands in *Akkermansia muciniphila* ATCC BAA-835 as Predicted by Island Viewer.

This strain is selected as reference strain for further analysis. Table 4.6 Summarizes the Details of Genomic Islands and Genes Present in Respective Island. Figure 4.10 Indicates the Bacteriocin Producing Genes Predicted by BAGEL. The probabilities that *Akkermansia muciniphila* strains are human pathogens were predicted by Pathogenecity island viewer and no pathogenecity islands found in *Akkermansia muciniphila*. (http://bagel4.molgenrug.nl).

Island start	Island end	${ m Length}$	Method	Gene name	Gene ID	Product
			Predicted			ABC
970190	200250	11010	by at	WP_0124		transporter
370430	390230	11012	least one	19377.1		ATP-binding
			method			protein
			Predicted			
215205	296197	10222	by at	WP_0319		hypothetical
313003	520127	10322	least one	30123.1		protein
			method			
			Predicted			DUF2778
127/196	1270021	5805	by at	WP_1230		domain
1374120	1379931	2002	least one	38903.1		-containing
			method			protein
			Dradicted			type II toxin-
			Predicted	WD 0194		antitoxin
1632716	1637515	4799	by at	WP_0124		system HicA
			least one	20401.1		family
			method			toxin
			Predicted			1
2004200	0020007	24407	by at	WP_0124	Δ.	biosynthetic
2004200	2038697	34497	least one	20692.1	speA	arginine
			method			decarboxylase

TABLE 4.6: Islands of Akkermansia muciniphila ATCC-BAA 835 Strain

Island start	Island end	Length	Method	Gene name	Gene ID	Product
2004200	2038697	34497	Predicted by at least one method	WP_0424 48227.1		bifunctional adenosylco binamide kinase/aden osylcob inamide- phosphate guanylyl transferase
2310076	2319099	9023	Predicted by at least one method	WP_0124 20939.1		iron- containing alcohol dehydrogenase

TABLE 4.6: Islands of Akkermansia muciniphila ATCC-BAA 835 Strain

FIGURE 4.10: Bacteriocin of Akkermansia muciniphila ATCC- BAA 835 from BAGEL4

4.2.7 Akkermansia muciniphila CBA5201

Figure 4.11 Indicates the Presence of Genomic Islands in *Akkermansia muciniphila* CBA5201. Table 4.7 Summarizes the Details of Genomic Islands and Genes Present in Respective Island. Figure 4.12 Indicates the Bacteriocin Producing Genes Predicted by BAGEL. The probabilities that *Akkermansia muciniphila*

strains are human pathogens were predicted by Pathogenecity island viewer and no pathogenecity islands found in *Akkermansia muciniphila*.

FIGURE 4.11: Genetic Islands in *Akkermansia muciniphila* CBA5201 as Predicted by Island Viewer.

TABLE 4.7: Islands of Akkermansia muciniphila CBA5201 Strain

Island start	Island end	Length	Gene name	Gene ID	Product
72057	70108	71/1	WP_16491		sugar-binding
12001	15150	1141	7341.1		protein
					tRNA cyclic N6-
107004	136880	20876	WP_10273	ted A	threonyl carbamo
107004	130880	23010	3850.1	loun	yladenosine(37)
					synthase TcdA
130388	135551	5163	WP_10273		VWA domain-
100000	100001	0100	7849.1		containing protein
Island	Island	Length	Gene	Gene	Product
--------	--------	--------	---------------	------	--------------------
start	end		name	ID	
190900	195551	5162	WP_12880		hypothetical
190900	199991	5105	4659.1		protein
155400	170714	94994	$WP_{-}10274$		hypothetical
155490	179714	24224	3592.1		protein
172059	101094	7066	WP_12880		hypothetical
175058	181024	7900	4674.1		protein
			WD 00720		type II toxin-
397828	415000	17172	WP_08739		antitoxin system
			3711.1		HicA family toxin
427000	110010	10001	WP_10273		addiction module
401222	440213	10991	7454.1		toxin, HicA family
437999	118913	10001	WP_10273		YHYH domain-
401222	440210	10331	7591.1		containing protein
441165	440800	8644	WP_16491		hypothetical
441100	449009	0044	7364.1		protein
441165	440800	8644	WP_1027		hypothetical
441100	445005	0044	37449.1		protein
441165	110800	8644	$WP_{-}10273$		hypothetical
441100	445005	0044	7450.1		protein
441165	449809	8644	$WP_{-}10273$		hypothetical
441100	445005	0044	7452.1		protein
441165	449809	8644	WP_12880		hypothetical
11100	110000	0011	4703.1		protein
441165	449809	8644	$WP_{-}10273$		addiction module
11100	110000	0011	7454.1		toxin, HicA family
441165	449809	8644	WP_10273		YHYH domain-
	110003	UUII	7591.1		containing protein

TABLE 4.7: Islands of Akkermansia muciniphila CBA5201 Strain

Island	Island	Longth	Gene	Gene	Droduct
start	end	Length	name	ID	Froduct
441165	440200	9611	WP_1288		hypothetical
441105	449609	8044	04704.1		protein
441165	440800	8644	$WP_{-}1282$		hypothetical
441105	449609	8044	20221.1		protein
			WD 1097		tyrosine-type
441165	449809	8644	WP_{-1027}		recombinase/
			37430.1		integrase
441165	440800	9611	WP_16199	whoV	rRNA maturation
441105	449609	8044	4078.1	yber	RNase YbeY
441165	440800	8611	$WP_{-}1027$		HDIG domain-
441105	449609	8044	33694.1		containing protein
874004	883636	0542	WP_0464		hypothetical
014034	000000	9042	36576.1		protein
			WD 1999		restriction
1072668	1077975	5307	0.4751.1		endonuclease
			04751.1		subunit S
1500113	5186		WP_1288		AKKM5201
1909119	5100		04778.1		$_RS06460$
					RHS repeat-
			WP 1640		associated core
1503927	1509113	5186	17/10 1		domain-
			17419.1		containing
					protein
1556770	1564486	7716	WP_094		hypothetical
1000110	1001100	1110	140227.1		protein
2029628	2059455	29827	WP_128		hypothetical
2020020	2000 100		804824.1		protein

TABLE 4.7: Islands of Akkermansia muciniphila CBA5201 Strain

Island start	Island end	Length	Gene name	Gene ID	Product
2035747	2058180	22433	WP_0464 37171.1		hypothetical protein
2223865	2234230	10365	WP_0818 63700.1		substrate-binding domain-containing protein
2307928	2316277	8349	WP_1027 37558.1		master DNA invertase Mpi family serine- type recombinase
2778256	2782733	4477	WP_1288 04861.1		hypothetical protein

TABLE 4.7: Islands of Akkermansia muciniphila CBA5201 Strain

BAGEL4

4.2.8 Akkermansia muciniphila DSM 22959

Figure 4.13 Indicates the Presence of Genomic Islands in *Akkermansia muciniphila*DSM 22959 .Table 4.8 Summarizes the Details of Genomic Islands and Genes Present in Respective Island. Figure 4.14 Indicates the Bacteriocin Producing Genes Predicted by BAGEL. The probabilities that *Akkermansia muciniphila* strains are

human pathogens were predicted by Pathogenecity island viewer and no pathogenecity islands found in *Akkermansia muciniphila*.

AKKERMANSIA MUCINIPHILA STRAIN DSM 22959 CHROMOSOME, COMPLETE GENOME.

FIGURE 4.13: Genetic Islands in Akkermansia muciniphila DSM 22959 as Predicted by Island Viewer.

Island start	Island end	Length	Gene name	Gene ID	Product
313861	324183	10322	WP_01241 9064.1	dnaA	chromosomal replication initiator protein DnaA
376494	387478	10984	WP_01241 9064.1	dnaA	chromosomal replication initiator protein DnaA

TABLE 4.8: Islands of Akkermansia muciniphila DSM22959 Strain

Island	Island	Length	Gene	Gene	Product
start	end		name	ID	
					chromosomal
1372163	1377968	5805	WP_01241	dnaA	replication
1012100	1011000	0000	9064.1	unari	initiator protein
					DnaA
					chromosomal
1630753	1635559	4700	WP_01241	dnaA	replication
1030733	1055552	4133	9064.1	ullaA	initiator protein
					DnaA
					chromosomal
2002236	2011743	9507	WP_01241 9064.1	dnaA	replication
2002230	2011745				initiator protein
					DnaA
		9507	WP_01242 0692.1	speA	chromosomal
2002236	2011743				replication
2002230	2011745				initiator protein
					DnaA
					adenosyl
2025587	2036733	11146	WP_0124	cobS	cobinamide-
2020001	2000100	11140	20713.1	000	GDP ribazolet
					ransferase
					adenosyl
2025587	2036733	11146	WP_0124	cobS	cobinamide-
2020001	2000100	11140	20713.1	0000	GDP ribazolet
					ransferase
			WP_01241		chromosomal
2027085	2034483	7398		dnaA	replication
		9004.1		initiator protein DnaA	

TABLE 4.8: Islands of Akkermansia muciniphila DSM22959 Strain

Island start	Island end	Length	Gene name	Gene ID	Product
2294595	2317121	22526	WP_0124 19064.1	dnaA	chromosomal replication initiator protein DnaA
2294595	2317121	22526	WP_0124 19064.1	dnaA	chromosomal replication initiator protein DnaA
2294595	2317121	22526	WP_0124 20923.1	murA	UDP-N- acetylglucosamine 1-carboxyvinyl transferase
2294595	2317121	22526	WP_0124 20925.1	aroC	chorismate synthase

FIGURE 4.14: Bacteriocin of Akkermansia muciniphila DSM22959 from BAGEL

4.2.9 Akkermansia muciniphila JCM 30893

Figure 4.15 Indicates the Presence of Genomic Islands in *Akkermansia muciniphila* JCM 30893 Table 4.9 Summarizes the Details of Genomic Islands and Genes Present in Respective Island. Figure 4.16 Indicates the Bacteriocin Producing Genes Predicted by BAGEL. The probabilities that *Akkermansia muciniphila*

strains are human pathogens were predicted by Pathogenecity island viewer and no pathogenecity islands found in *Akkermansia muciniphila*.

FIGURE 4.15: Genetic islands in *Akkermansia muciniphila*JCM 30893 as Predicted by Island Viewer.

TABLE 4.9 :	Islands of	Akkermansia	muciniphila	JCM30893	Strain
---------------	------------	-------------	-------------	----------	--------

Island start	Island end	Length	Gene name	Gene ID	Product
150826	162569	11743	WP_102741	thiS	sulfur carrier
			725.1		protein ThiS
301350	409573	18214	WP_16261		HDIG domain-
001000 400010	10214	0405.1		containing protein	
584220	591615	7395	WP_065529		competence/damage-
004220	001010	1090	667.1		inducible protein A
1576004 1506071		19187	$WP_{-}15584$		hypothetical protein
1010004 100011	4540.1			nypotnencai protein	
2231406	2241815	10409	WP_03193	$\cosh S$	adenosylcobinamide-
2231406 224181		10409	1181.1	CODO	GDP ribazoletransferase

Island start	Island end	Length	Gene name	Gene ID	Product
2322132	2332660	10528	WP_0941 36305.1	infC	translation initiation factor IF-3
2522010	2531686	9676	WP_1027 43890.1	crcB	fluoride efflux transporter CrcB
30893.fas Gene names Predicted promot Predicted termina Show or hide sma	ers tors ill ORFS				 No function determined Blast hit with UniRef90 Core Peptide Modification Immunity / Transport Regulation Transport & Leader cleavage Protease

TABLE 4.9: Islands of Akkermansia muciniphila JCM30893 Strain

4.2.10 Akkermansia muciniphila AMDK-7

Figure 4.18 Indicates the Presence of Genomic Islands in *Akkermansia muciniphila* AMDK-7. Table 4.10 Summarizes the Details of Genomic Islands and Genes Present in Respective Island. Figure 4.17 Indicates the Bacteriocin Producing Genes Predicted by BAGEL. The probabilities that *Akkermansia muciniphilastrains* are human pathogens were predicted by Pathogenecityisland viewer and no pathogenecity islands found in *Akkermansia muciniphila*.

FIGURE 4.17: Bacteriocin of Akkermansia muciniphila AMBK-7 from BAGEL4

FIGURE 4.18: Genetic Islands in Akkermansia muciniphila AMDK-7 as Predicted by Island Viewer.

TABLE 4.10.	Islands o	of Akkermansia	mucininhila	AMDK-7	Strain
\mathbf{T}	istanus 0	1 1Innermansia	macmiphila	1111D11-1	Suam

Island	Island	Length	Gene Length Gene II		Product
start	end		name		
181/03	186601	5198	WP_12825		DUF3800 domain-
101403	100001	0190	1927.1		containing protein
355998	366318	10320	WP_01241		transcriptional
000000	000010	10020	9320.1		regulator
766900	779893	12994	$WP_{-}12825$		hypothetical
100035	115050	12554	2167.1		protein
898913	909636	10723	WP_12825		hypothetical
000010	000000	10120	2219.1		protein
919872	930500	10628	WP_12825		hypothetical
	200000	10020	2235.1		protein

AKKERMANSIA MUCINIPHILA STRAIN EB-AMDK-7 CHROMOSOME,

Island	nd Island Gene Length Gene		Gene ID	Product	
start	\mathbf{end}	Longon	name		i fotdaði
					RHS repeat-
					associated
1434911	1440184	5273	WP_12825		core domain-
			2423.1		containing
					protein
1446520	1462049	16510	WP_08142	la das D	K(+)-transporting
1440338	1403048	10510	9137.1	карғ	ATPase subunit F
1007007	1000076	1 40 40	$WP_{-}128252$	Б	nucleotide exchange
1907827	1922076	14249	627.1	grpE	factor GrpE
1010017	1017004	7077	WP_12825		hypothetical
1910017	1917094	(677	2626.1		protein
					tRNA (adenosine
					(37)-N6)-
			UUD 100050		threonyl carbam
1955317	1962789	7472	WP_128252	tsaB	oyltransferase
			649.1		complex dimeri
					zation subunit
					type 1 TsaB
9197570	9159996	15916	WP_12825		hypothetical
2137370	2100000	13810	2712.1		protein
9155094	9161140	6195	WD 199959712 1		hypothetical
2100024	2101149	0125	WF_120202715.1		protein
					DEAD/DEAH box
2211592	2220164	8572	WP_128252731.1		helicase family
					protein
2108650	0/10000	0665	WD 065590106 1	orcD	fluoride efflux
2400000	2410929	9009	WI _000029190.1	CICD	transporter CrcB

TABLE 4.10: Islands of Akkermansia muciniphila AMDK-7 Strain

Island start	Island end	Length	Gene name	Gene ID	Product
2667482	2676323	8841			acyltransferase family
					protein
2756084	2762533	6449	WP_094137864.1		hypothetical protein

TABLE 4.10: Islands of Akkermansia muciniphila AMDK-7 Strain

4.2.11 Akkermansia muciniphila AMDK-8

Figure 4.19 Indicates the Presence of Genomic Islands in *Akkermansia muciniphila* AMDK-8. Table 4.11 Summarizes the Details of Genomic Islands and Genes present in Respective Island. Figure 4.20 Indicates the Bacteriocin Producing Genes Predicted by BAGEL. The probabilities that *Akkermansia muciniphila* strains are human pathogens were predicted by Pathogenecity island viewer and no pathogenecity islands found in *Akkermansia muciniphila*.

Island start	Island end	Length	Gene name	Gene ID	Product	
39377	56879	17502	WP_10273		hypothetical	
	00015	11002	2764.1		protein	
104072 1	113030	113030	8066	WP_12815		hypothetical
104515	110000	0000	3682.1		protein	
128901 136480	136480	7570	WP_04643		hypothetical	
	130400	1919	6036.1		protein	
280462	287107	6645	WP_12822		hypothetical	
280402	201101	0040	0153.1		protein	

TABLE 4.11: Islands of Akkermansia muciniphila AMDK-8 Strain

Island	Island Gene Gene Length		Gene	Product	
start	end		name	ID	
			UD 100790		trypsin-like peptidase
371830	384399	12569	WP_102738		domain-containing
			840.1		protein
405011	420504	1/692	$WP_{-}102741$		site-specific
403911	420394	14003	300.1		integrase
415101	491975	6194	WP_102733		HDIG domain-
415191	421375	0104	694.1		containing protein
807277	004708	7221	WP_094140		IS1595 family
091311	904708	7551	696.1		transposase
			WD 199990		type I restriction
1113796	1118641	4845	249 1		endonuclease
			348.1		subunit R
1501194	1506070	5855	WP_081429	kdnF	K(+)-transporting
1001124	1000979		137.1	карг	ATPase subunit F
					2-C-methyl-D-
1621582	1636409	14897	WP_094135		erythritol 2,4-
1021002	1000405	14021	541.1		cyclodiphosphate
					synthase
2102810	2109501	6691	WP_102735		hypothetical
2102010	2105001	0001	124.1		protein
2686461	2690938	4477	WP_128157		hypothetical
2000101	2000030	1111	668.1		protein
			WP 198990		Txe/YoeB family
2771676	2788330	16654	805.1		addiction module
			005.1		toxin
2784103	2790038	5935	WP_128220		hypothetical
	2.00000	0000	750.1		protein

TABLE 4.11: Islands of Akkermansia muciniphila AMDK-8 Strain

AKKERMANSIA MUCINIPHILA STRAIN EB-AMDK-8 CHROMOSOME,

FIGURE 4.19: Genetic Islands in *Akkermansia muciniphila* AMDK-8.as Predicted by Island Viewer.

FIGURE 4.20: Bacteriocin of Akkermansia muciniphila AMBK-8 from BAGEL4

4.2.12 Akkermansia muciniphila AMDK-10

Figure 4.21 Indicates the Presence of Genomic Islands in *Akkermansia muciniphila* AMDK-10. Table 4.12 Summarizes the Details of Genomic Islands and Genes Present in Respective Island. Figure 4.22 Indicates the Bacteriocin Producing Genes Predicted by BAGEL. The probabilities that *Akkermansia muciniphila*

strains are human pathogens were predicted by Pathogenecityisland viewer and no pathogenecity islands found in *Akkermansia muciniphila*.

FIGURE 4.21: Genetic Islands in *Akkermansia muciniphila*AMDK-10 as Predicted by Island Viewer.

Island	Island	Longth	Gene	Gene	Product	
start	end	Length	name	ID	i ioduci	
39306 79	70281	30075	WP_02219	als A	alutaminaso A	
	19201	09910	7161.1	gisA	giutaininase A	
49951	40038	6787	WP_128153		PepSY domain-	
42201	49038	0101	368.1		containing protein	
106304	140674	34370	WP_128153		hypothetical	
106304	140074	94910	382.1		protein	

TABLE 4.12: Islands of Akkermansia muciniphila AMDK-10 Strain

Island	Island	Longth	Gene	Gene	Product
start	end	Deligti	name	ID	Troduct
100575	116690	2064	WP_128153		hypothetical
100070	110059	8004	682.1		protein
139786	140031	7245	WP_046436		hypothetical
152760	140031	7240	036.1		protein
283478	201028	8450	WP_046434		hypothetical
200410	291920	0400	858.1		protein
376710	388739	12029	WP_128190		hypothetical
010110	000100	12025	976.1		protein
			WP 022108		rRNA
420636	426433	5797	399.1	ybeY	maturation
			522.1		RNase YbeY
420636	426433	5797	WP_102733		HDIG domain-
420000	420400	0101	694.1		containing protein
			WP 193044		type I restriction
1122546	1127355	4809	031 1		endonuclease
			001.1		subunit R
1453447	1475779	22332	WP_12304	ilvD	dihydroxy-acid
1100111	1110115	22002	4062.1	IIVD	dehydratase
1455174	1466546	11379	$WP_{-}10273$		hypothetical
1400114	1100010	11012	3457.1		protein
1455174	1466546	11372	WP_10273		hypothetical
1400114	1100010	11012	3459.1		protein
1455174	1466546	11372	WP_128153		hypothetical
1400114	1100010	11012	481.1		protein
1455174	1466546	11372	WP_128153		hypothetical
1100114	1100010	11012	482.1		protein

TABLE 4.12: Islands of Akkermansia muciniphila AMDK-10 Strain

Island start	Island end	Length	Gene name	Gene ID	Product
			WP 123044		hypothetical
1455174	1466546	11372	063.1		protein
			WD 199152		hypothetical
1455174	1466546	11372	402.1		nypotheticai
			400.1		protein
1455174	1466546	11372	WP_128153		hypothetical
			484.1		protein
1455174	1466546	11372	WP_123044		hypothetical
			064.1		protein
1455174	1466546	11372	WP_{10273}		IS1595 family
1100111	1100010	11372	4350.1		transposase
					outer
1 455154	1 4005 40	11070	WP_10273		membrane
1455174 1466546	1400540	11372	4349.1		beta-barrel
					protein
1455174	1466546	11279	WP_10273		hypothetical
1400174	1400340	11372	4348.1		protein
					RHS repeat-
					associated
1 455174	1 4005 40	11970	WP_102734		core
1455174	1400540	11372	347.1		domain-
					containing
					protein
1 455174	1 4005 40	11970	$WP_{-}10273$		hypothetical
1433174	1400340	11372	4346.1		protein
	14005-10	11050	WP_128153		hypothetical
1455174	1466546	11372	485.1		protein

TABLE 4.12: Islands of Akkermansia muciniphila AMDK-10 Strain

Island start	Island end	Length	Gene name	Gene ID	Product
1510004	1505504	K 010	WP_123038		DUF2778
1519094	1525504	5810	903.1		domain- containing protein
2211213	2223743	12530	WP_12304	coaD	pantetheine- phosphate adenvlyl
			4222.1		transferase
2212243	2219999	7756	WP_128153 571.1		hypothetical protein
2593118	2598330	5212	WP_09413	cas2	CRISPR- associated
			6088.1 WP 12815		endonuclease Cas2 hypothetical
2668514	2672991	4477	3561.1		protein
2725796	2730878	5082	WP_046437 351.1	lepB	signal peptidase I

TABLE 4.12: Islands of Akkermansia muciniphila AMDK-10 Strain

FIGURE 4.22: BAGEL Results

4.2.13 Akkermansia muciniphila AMDK-11

Figure 4.23 Indicates the Presence of Genomic Islands in *Akkermansia muciniphila* AMDK-11. Table 4.13 Summarizes the Details of Genomic Islands and Genes

present in Respective Island. Figure 4.24 Indicates the Bacteriocin Producing genes predicted by BAGEL. The probabilities that *Akkermansia muciniphilastrains* are human pathogens were predicted by Pathogenecityisland viewer and no pathogenecity islands found in *Akkermansia muciniphila*.

FIGURE 4.23: Genetic Islands in *Akkermansia muciniphila*AMDK-11 as Predicted by Island Viewer.

Island start	Island end	Length	Gene name	Gene ID	Product
39309	79291	39982	WP_10273 2764.1		hypothetical protein
106311	140689	34378	WP_12825 1664.1		tyrosine-type recombinase/ integrase
108588	116653	8065	WP_10273 3853.1		SEL1-like repeat protein

TABLE 4.13: Islands of Akkermansia muciniphila AMDK-11 Strain

Island start	Island end	Length	Gene name	Gene ID	Product
139468	140046	7578	WP_094139		HipA domain-
152400	140040	1010	775.1		containing protein
					RHS repeat-
			WP 1930/3		associated core
283506	291956	8450	022.1		domain-
			932.1		containing
					protein
376749	388355	11613	WP_012419		${\it transcriptional}$
510112	000000	11015	320.1		regulator
			WP 109733		HDIG domain-
407271	426477	19206	604 1		containing
			094.1		protein
420676	426477	5801	WP_102732		AAA family
120010	120111	0001	238.1		ATPase
	1127494	4809	WP 193044		type I restriction
1122685			031 1		endonuclease
			031.1		subunit R
					RHS repeat-
			WP 102734		associated core
1453693	1478015	24322	347.1		domain-
			047.1		containing
					protein
					RHS repeat-
			WP 102734		associated core
1455420	1466777	11357	347.1		domain-
			0111		containing
					protein

TABLE 4.13: Islands of Akkermansia muciniphila AMDK-11 Strain

Island start	Island end	Length	Gene name	Gene ID	Product
1519943	1525753	5810	WP_08142 9137.1	kdpF	K(+)-trans porting ATPase subunit F
2191442	2224114	32672	WP_102733 478.1	xseA	exodeoxy ribonuclease VII large subunit
2593548	2598761	5213	WP_10273 4057.1	cas1c	type I-C CRISPR- associated endonuc lease Cas1
2628065	2644673	16608	WP_0221 97099.1		Glycosyl transferase
10.fasta ■ Gene names	AOI_01			□ N □ B □ C	o function determined last hit with UniRef90 ore Peptide Idolfication

TABLE 4.13: Islands of Akkermansia muciniphila AMDK-11 Strain

FIGURE 4.24: Bacteriocin of Akkermansia muciniphila AMBK-11 from BAGEL4

4.2.14 Akkermansia muciniphila AMDK-12

Figure 4.25 Indicates the Presence of Genomic Islands in *Akkermansia muciniphila* AMDK-12. Table 4.14 Summarizes the Details of Genomic Islands and Genes

Present in Respective Island. Figure 4.26 Indicates the Bacteriocin Producing Genes Predicted by BAGEL. The probabilities that *Akkermansia muciniphilastrains* are human pathogens were predicted by Pathogenecityisland viewer and no pathogenecity islands found in *Akkermansia muciniphila*.

FIGURE 4.25: Genetic Islands in *Akkermansia muciniphila*AMDK-12 as Predicted by Island Viewer.

Island start	Island end	Length	Gene name	Gene ID	Product
39309	79351	40042	WP_10273 2764.1		hypothetical protein
39309	79351	40042	WP_12304 4205.1		RHS repeat- associated core domain-containing protein

TABLE 4.14: Islands of Akkermansia muciniphila AMDK-12 Strain

Island	Island	Longth	Gene	Gene	Droduct
start	end	Length	name	ID	Product
139468	140046	7578	WP_046436		hypothetical
102400	140040	1010	036.1		protein
283508	201058	8450	WP_123043		hypothetical
20000	291908	0400	937.1		protein
276744	200257	11612	WP_09414		hypothetical
370744	200201	11015	0769.1		protein
407972	496470	10206	WP_12815		hypothetical
407273	420479	19200	3412.1		protein
420678	496470	5901	WP_10273		hypothetical
420078	420479	3601	3694.1		protein
834054	844073	10010	WP_12815		hypothetical
004904	044975	10019	3446.1		protein
1199601	1197500	4800	WP_12304		hypothetical
1122091	1127500	4009	4031.1		protein
1338363	1349840	4477	WP_128153		hypothetical
1990909	1342040	4411	561.1		protein
1367196	1282724	16608	WP_10273		hypothetical
1307120	1000704	10008	4081.1		protein
1505641	1605183	0542	WP_01242		hypothetical
1090041	1005185	9042	0931.1		protein
					pantetheine-
1786737	1800105	13/58	WP_123044	coaD	phosphate
1100101	1000195	10400	222.1	COaD	adenylyl
					transferase
			WD 190159		restriction
1790914	1799165	8251	vv г _120100		endonuclease
			332.1		subunit S

TABLE 4.14: Islands of Akkermansia muciniphila AMDK-12 Strain

TABLE 4.14: Islands of Akkermansia muciniphila AMDK-12 Strain

4.2.15 Akkermansia muciniphila AMDK-13

Figure 4.27 Indicates the Presence of Genomic Islands in *Akkermansia muciniphila* AMDK-13. Table 4.15 Summarizes the Details of Genomic Islands and Genes Present in Respective Island. Figure 4.28 Indicates the Bacteriocin Producing Genes Predicted by BAGEL. The probabilities that *Akkermansia muciniphila* strains are human pathogens were predicted by Pathogenecity island viewer and no pathogenecity islands found in *Akkermansia muciniphila*.

AKKERMANSIA MUCINIPHILA STRAIN EB-AMDK-13 CHROMOSOME, COMPLETE GENOME.

FIGURE 4.27: Genetic Islands in Akkermansia muciniphila AMDK-13 as Predicted by Island Viewer.

TABLE 4.15 :	Genetic islands	in Akkermansia	muciniphila AMDK-13
----------------	-----------------	----------------	---------------------

Island	Island	Length	Gene	Gene ID	Product
start	end	Lengun	name		
20210	56916	17407	WP_0221	ala V	alutaminaga A
39319	30810	11491	97161.1	gisA	giutammase A
42264	49050	6786	WP_1027		IS3 family
			32766.1		transposase

Island	Island	Longth	Gene	Cono ID	Product
start	\mathbf{end}	Deligtii	name	Gene ID	Troduct
100505	110004	0020	WP_12815		hypothetical
108585	110024	8039	3378.1		protein
			WP_09413		HipA domain-
132463	140040	7577	9775.1		containing
					protein
283486	291936	8450	WP_12304		hypothetical
200100	201000	0100	3937.1		protein
376710	388303	11613	WP_0941		hypothetical
570710	000020	11015	40769.1		protein
			WD 1610		rRNA
407723	426422	18699	WP_1019	ybeY	maturation
			94078.1		RNase YbeY
					m rRNA
420642	426422	5780	WP_16199	ybeY	maturation
			4078.1		RNase YbeY
834703	844877	10084	WP_12815		hypothetical
004790	044011	10004	3446.1		protein
			WD 19904		restriction
1122574	1127383	4809	WP_12304		endonuclease
			4029.1		subunit S
1453540	1475868	00208	WP_12304	ilvD	dihydroxy-acid
1400040	1470000	22328	4062.1		dehydratase
1455967	1466691	11954	WP_10273		hypothetical
1455207	1400021	11354	4345.1		protein
1510050	1505505	5749	WP_08142		K(+)-transporting
1519852	1525595	3743	9137.1	карғ	ATPase subunit F

TABLE 4.15: Genetic islands in Akkermansia muciniphila AMDK-13 $\,$

Island start	Island end	Length	Gene name	Gene ID	$\mathbf{Product}$
1654000	1650559	4720	WP_1809		hypothetical
1004820	1009000	4730	71958.1		protein
2211342	2223872	12530	WP_1230 44222.1	coaD	pantetheine- phosphate adenylyltransferase
					restriction
2212372	2220128	7756	WP_12815		endonuclease
			3571.1		subunit S
9407470	9417117	0647	WP_022197	orroD	fluoride efflux
2407470	241(11(9047	217.1	CICD	transporter CrcB
					CRISPR-
2503213	2598426	5213	WP_09413	cas?	associated
2030210	2090420	5215	6088.1	Casz	endonuclease
					Cas2
					glycosyl
2627727	2644333	16606	$WP_{-}1027$		transferase
2021121	2011000	10000	34081.1		family 2
					protein
2668618	2673095	4477	WP_09413		hypothetical
2000010	2010030	4477	9728.1		protein
2725915	2730997	5082	WP_04643	lenR	signal
	2100001	5002	7351.1	юрь	peptidase I

TABLE 4.15: Genetic islands in Akkermansia muciniphila AMDK-13

4.2.16 Akkermansia muciniphila AMDK-14

Figure 4.29 Indicates the Presence of Genomic Islands in *Akkermansia muciniphila* AMDK-14. Table 4.16 Summarizes the Details of Genomic Islands and Genes

FIGURE 4.28: Bacteriocin of Akkermansia muciniphila AMBK-13 from BAGEL4

Present in Respective Island. Figure 4.30 Indicates the Bacteriocin Producing Genes Predicted by BAGEL. The probabilities that *Akkermansia muciniphilastrains* are human pathogens were predicted by Pathogenecityisland viewer and no pathogenecity islands found in *Akkermansia muciniphila*.

FIGURE 4.29: Genetic Islands in *Akkermansia muciniphila* AMDK-14 as Predicted by Island Viewer.

Island start	Island end	Length	Gene name	Gene ID	Product
39308	81891	42583	WP_102732764.1		hypothetical protein
108585	116624	8039	WP_128153378.1		hypothetical protein
132463	140041	7578	WP_046436036.1		hypothetical protein
283488	291950	8462	WP_102734797.1		hypothetical protein
376735	388348	11613	WP_094140769.1		hypothetical protein
407749	426469	18720	WP_102733694.1		HDIG domain- containing protein
420668	426469	5801	WP_102732238.1		AAA family ATPase
834926	844207	9281	WP_123043999.1		hypothetical protein
1453637	1477959	24322	WP_128153485.1		hypothetical protein
1455364	1466736	11372	WP_128153485.1		hypothetical protein
					DUF2778
1519887	1525696	5809	WP_123038903.1		domain-containing
					protein
					pantetheine-
2191369	2224040	32671	WP_123044222.1	coaD	phosphate adenylyl
					transferase
2212540	2220296	7756	WP_128153571.1		hypothetical protein
2407635	2417283	9648	WP_012420932.1		hypothetical protein
					type I-C CRISPR
2593428	2598641	5213	WP_102734060.1	cas5c	-associated protein
					Cas5
2627944	2644552	16608	WP 102734081 1		gly cosyltransferase
2021011	2011002	10000			family 2 protein
2668837	2673314	4477	$WP_{-}128157668.1$		hypothetical protein
2726135	2731217	5082	WP_046437351.1	lepB	signal peptidase I

TABLE 4.16: Islands of Akkermansia muciniphila AMDK-14 Strain

FIGURE 4.30: Bacteriocin of Akkermansia muciniphila AMBK-14 from BAGEL4

4.2.17 Akkermansia muciniphila AMDK-15

Figure 4.31 Indicates the Presence of Genomic Islands in *Akkermansia muciniphila* AMDK-15.Table 4.17 Summarizes the Details of Genomic Islands and Genes Present in Respective Island. Figure 4.32 Indicates the Bacteriocin Producing Genes Predicted by BAGEL. The probabilities that *Akkermansia muciniphila* strains are human pathogens were predicted by Pathogenecityisland viewer and no pathogenecity islands found in *Akkermansia muciniphila*.

FIGURE 4.31: Genetic Islands in *Akkermansia muciniphila* AMDK-15 as Predicted by Island Viewer.

Island	Island	Length	Gene name	Gene ID	Product
start	\mathbf{end}	Longon			Troduct
29405	76617	20010	WD 199109605 1		hypothetical
30400	70017	36212	WF_120192095.1		protein
105/16	11/2//	8028	WP 109739703 1		hypothetical
100410	114044	6926	W1 _102752795.1		protein
					HipA
128034	135611	7577	WP 102732799 1		domain-
120004	100011	1011	WI _102702755.1		containing
					protein
275145	279399	4254	WP 102732994 1		hypothetical
210140	210000	1201	WI _102752594.1		protein
364859	377709	12850	WP 128154364 1		hypothetical
001000	511105	12000			protein
383419	388446	5027	WP 022198860 1		hypothetical
000110	000110	0021			protein
600713	662294	61581	WP 102733050 1		hypothetical
000110	002201	01001	11 - 102 - 030000.1		protein
					K(+)-
624858	633757	8899	WP_081429137.1	kdpF	transporting
					ATPase subunit F
					VWA domain-
647468	655329	7861	WP_102732964.1		containing
					protein
675204	700876	25672	WP 128154479 1		hypothetical
010204	100010	23072	vv r_120104479.1		protein
60/083	600197	5044	WP 198154407 1		hypothetical
001000	000121	0011			protein

TABLE 4.17: Islands of Akkermansia muciniphila AMDK-15 Strain

Island start	Island end	Length	Gene name	Gene ID	Product
					ParB-like
					nuclease
1004560	1008762	4202	WP_012419831.1		domain-
					containing
					protein
					DNA polymerase
1051542	1069509	17967	WP_022198166.1	dnaN	III subunit
					beta
					type I restriction
1119931	1127011	7080	$WP_{-128154681.1}$		endonuclease
					subunit R
					DUF2971
1750074	1757973	6999	WP_022198314.1		domain-
1100914					containing
					protein
1751755	1760185	8430	WP_022198321.1		site-specific
1101100	1700105	0430			integrase
2404170	9415996	11056	WD 109799654 1		carbohydrate
2404110	2410220	19220 11090	W1_102702004.1		kinase
					potassium
2530887	2539578	8691	WP_128155289.1		channel
					family protein
					glycosyl
2640085	2656692	16607	WP_022197102.1		transferase
					family 2 protein
2750864	2757136	6272	WP 102732736 1		recombinase
2100004	2101100	0212	,,,, _102102100.1		family protein

TABLE 4.17: Islands of Akkermansia muciniphila AMDK-15 Strain

FIGURE 4.32: Bacteriocin of Akkermansia muciniphila AMBK-15 from BAGEL4.

4.2.18 Akkermansia muciniphila AMDK-16

Figure 4.33 Indicates the Presence of Genomic Islands in *Akkermansia muciniphila* AMDK-16. Table 4.18 Summarizes the Details of Genomic Islands and Genes Present in Respective Island. Figure 4.34 Indicates the Bacteriocin Producing Genes Predicted by BAGEL. The probabilities that *Akkermansia muciniphila* strains are human pathogens were predicted by Pathogenecity island viewer and no pathogenecity islands found in *Akkermansia muciniphila*.

Island start	Island end	Length	Gene name	Gene ID	Product
38375	54441	16066	WP_145963244.1		hypothetical
					protein
103148	136572	33424	WP_128154229.1		hypothetical
100110	100012	00424			protein
105425	114353	8928	WP 102732793 1		hypothetical
100120	111000	0020			protein
1280/13	135620	7577	WP_128154226.1		hypothetical
120040	100020	1011			protein
975159	270815	4663	WP_102732991.1		hypothetical
210102	215010	4000			protein
363899	377697	13798	WP 145963247 1		hypothetical
500000	511051	10100	,,,,_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		protein

TABLE 4.18: Islands of Akkermansia muciniphila AMDK-16 Strain

Island start	Island end	Length	Gene name	Gene ID	Product
202407	200200	4000	WD 000100056 1		tape measure
383407	388390	4989	WP_022198850.1		protein
600673	662255	61582	WP_123044217.1		hypothetical protein
624810	633718	8800	WP 081420137 1	kdnF	K(+)-transporting
024013	000710	0033	W1_001429107.1	карг	ATPase subunit F
647420	655200	7861	WP 102732964 1		VWA domain-
041425	055250	1001	W1_102752504.1		containing protein
675166	700838	25672	WP 022196927 1	ilvD	dihydroxy-acid
010100	100000	20012	W1_022150521.1	IIVD	dehydratase
694045	699089	5044	WP_128154497.1		hypothetical protein
					ParB-like nuclease
1004479	1008681	4202	WP_012419831.1		domain-containing
					protein
1051444	1069411	17967	WP 022198166 1	dnaN	DNA polymerase
1001111	1005411	11501	W1_022150100.1	dilar	III subunit beta
					type I restriction
1119835	1126915	7080	WP_128154681.1		endonuclease
					subunit R
1750915	1757914	6999	WP 022198323 1		HDIG domain-
1100010	1101011	0000	11 -022150020.1		containing protein
2404128	2415184	11056	$WP_{-}102732654.1$		carbohydrate kinase
2530844	2530535	8601	WP 128155280 1		potassium channel
2000044	2009000	0031	W1_120100209.1		family protein
2640043	2656651	16608	WP 022107102 1		gly cosyltransferase
2040040	2000001	1 10000	WI _U221971U2.1		family 2 protein
2680926	2685402	4476	$WP_{-}102735771.1$		hypothetical protein
2750830	2757603	6773	WP_102732737.1		hypothetical protein

TABLE 4.18: Islands of Akkermansia muciniphila AMDK-16 Strain

FIGURE 4.33: Genetic Islands in *Akkermansia muciniphila* AMDK-16 as Predicted by Island Viewer.

FIGURE 4.34: Bacteriocin of Akkermansia muciniphila AMBK-16 from BAGEL4

4.2.19 Akkermansia muciniphilaAMDK-17

Figure 4.35 Indicates the Presence of Genomic Islands in *Akkermansia muciniphila* AMDK-17. Table 4.19 Summarizes the Details of Genomic Islands and Genes Present in Respective Island. Figure 4.36 Indicates the Bacteriocin Producing Genes Predicted by BAGEL. The probabilities that *Akkermansia muciniphila*

strains are human pathogens were predicted by Pathogenecityisland viewer and no pathogenecity islands found in *Akkermansia muciniphila*.

FIGURE 4.35: Genetic Islands in *Akkermansia muciniphila* AMDK-17 as Predicted by Island Viewer.

TABLE 4.19: Genetic Islands in Akkermansia muciniphila AMDK-1	17
---	----

Island start	Island end	Length	Gene name	Gene ID	Product
315805	326127	10322	WP_031930123.1		hypothetical protein
378438 3	200250	11812	WP_012419377.1		ABC transporter
	390230				ATP-binding protein
1274196	1379931	5805	WP_123038903.1		DUF2778 domain-
1374120					containing protein
					type II toxin-
1629716	1697515	4799	WP_012420401.1		antitoxin
1032710	109/919				system
					HicA family toxin

Island start	Island end	Length	Gene name	Gene ID	Product
					biosynthetic
2004200	2038697	34497	WP_012420692.1	speA	arginine
					decarboxylase
					bifunctional
2004200	2038697	34497	WP_042448227.1		adenosylcobinamide
					kinase/adenosyl
					cobinamide-
					phosphate
					guanylyltransferase
2310076	2319099	9023	WP_012420939.1		iron-containing
					alcohol
					dehydrogenase
17 chr.fasta AOI_01 Gene names Predicted promoters Predicted terminators Show or hide small ORFS					 No function determined Blast hit with UniRef90 Core Peptide Modification Immunity / Transport Regulation Transport & Leader cleavage Protease

TABLE 4.19: Genetic Islands in Akkermansia muciniphila AMDK-17

4.2.20 Akkermansia muciniphila AMDK-18

Figure 4.37 Indicates the Presence of Genomic Islands in *Akkermansia muciniphila* AMDK-18. Table 4.20 Summarizes the Details of Genomic Islands and Genes Present in Respective Island. Figure 4.38 Indicates the Bacteriocin Producing Genes Predicted by BAGEL. The probabilities that *Akkermansia muciniphila*
strains are human pathogens were predicted by Pathogenecityisland viewer and no pathogenecity islands found in *Akkermansia muciniphila*.

FIGURE 4.37: Genetic Islands in *Akkermansia muciniphila* AMDK-18 as Predicted by Island Viewer.

Island start	Island end	Length	Gene name	Gene ID	Product
38412	54442	16030	WP_102732764.1		hypothetical protein
103147	136570	33423	WP_128154229.1		hypothetical protein
105424	114352	8928	WP_102732793.1		hypothetical protein
128042	135618	7576	WP_128154226.1		hypothetical protein
275152	279406	4254	$WP_{-}102732991.1$		hypothetical protein
364869	377740	12871	WP_094140769.1		hypothetical protein
383429	388420	4991	$WP_{-}102731926.1$		hypothetical protein

TABLE 4.20: Islands of Akkermansia muciniphila AMDK-18 Strain

4.2.21

BAGEL4

Akkermansia muciniphila AMDK-19

Figure 4.39 Indicates the Presence of Genomic Islands in *Akkermansia muciniphila* AMDK-19. Table 4.21 Summarizes the Details of Genomic Islands and Genes Present in Respective Island. Figure 4.40 Indicates the Bacteriocin Producing Genes Predicted by BAGEL. The probabilities that *Akkermansia muciniphila* strains are human pathogens were predicted by Pathogenecityisland viewer and no pathogenecity islands found in *Akkermansia muciniphila*.

Island start	Island end	Length	Gene name	Gene ID	Product
					tyrosine-type
101105	137054	35949	$WP_{-}046436080.1$		recombinase/
					integrase
103376	111415	8039	WP_128153378.1		hypothetical protein
					DUF3320
116342	125106	8764	$WP_{-}102734753.1$		domain-
					containing protein
128834	136411	7577	WP 102734759 1		hypothetical
120004	100411	1011	W1_102104105.1		protein
367295	378718	11423	WP 022198322 1	vheV	rRNA maturation
501200	510110	11120	,,,022100022.1	y 00 1	RNase YbeY

TABLE 4.21: Islands of Akkermansia muciniphila AMDK-19 Strain

Island start	Island end	Length	Gene name	Gene ID	Product
					tRNA 2-
000554	0006FC	94109	WD 109729492 1	A	thiouridine
808004	832030	24102	WP_102732483.1	mnmA	(34) synthase
					MnmA
					trimeric
910154	991195	20021	WD 109724021 1		intracellular
010104	031133	20981	W1_102734931.1		cation channel
					family protein
					helix-turn-helix
874762	886808	12046	$WP_{-}094140708.1$		${\rm transcriptional}$
					regulator
					type I restriction
1093969	1099465	5496	WP_128153805.1		endonuclease
					subunit R
					DUF2778
1480095	1485950	50 5855	WP_123038903.1		domain-
1100000	1100000				containing
					protein
					type I-C CRISPR-
2553401	2558614	5213	WP_102734060.1	cas5c	\associated
					protein Cas5
					glycosyl
2587918	2604526	16608	WP 022197102 1		transferase
2001010	2004020	10000	W1_022157102.1		family 2
					protein
2686155	2691237	5082	WP 046437351 1	lenR	signal
	2001201	0002	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10pb	peptidase I

TABLE 4.21 :	Islands of	Akkermansia	muciniphila	AMDK-19 Strain
----------------	------------	-------------	-------------	----------------

FIGURE 4.39: Genetic Islands in *Akkermansia muciniphila* AMDK-19 as Predicted by Island Viewer.

FIGURE 4.40: Bacteriocin of Akkermansia muciniphila AMBK-19 from BAGEL4

4.2.22 Akkermansia muciniphila AMDK-20

Figure 4.41 Indicates the Presence of Genomic Islands in *Akkermansia muciniphila* AMDK-20. Table 4.22 Summarizes the Details of Genomic Islands and Genes Present in Respective Island. Figure 4.42 Indicates the Bacteriocin Producing Genes Predicted by BAGEL. The probabilities that *Akkermansia muciniphila*

strains are human pathogens were predicted by Pathogenecityisland viewer and no pathogenecity islands found in *Akkermansia muciniphila*.

AKKERMANSIA MUCINIPHILA STRAIN EB-AMDK-20 CHROMOSOME,

FIGURE 4.41: Genetic Islands in *Akkermansia muciniphila* AMDK-20. as predicted by Island Viewer.

Island start	Island end	Length	Gene name	Gene ID	Product
101102	137049	35947	WP_046436080.1		tyrosine-type recombinase /integrase
103373	111436	8063	WP_046436078.1		hypothetical protein
116338	125102	8764	WP_128153685.1		hypothetical protein

TABLE 4.22: Islands of Akkermansia muciniphila AMDK-20 Strain

Island start	Island end	Length	Gene name	Gene ID	Product
190169	126406	7944	WD 046426046 1		phosphatidy
129102	130400	(244	WF_040430040.1		linositol kinase
					HDIG domain-
367288	378711	11423	$WP_{-}102733694.1$		containing
					protein
					trimeric
010190	Q91110	20021	WD 109794091 1		intracellular
010130	031119	20981	WF_102734931.1		cation channel \backslash
					family protein
					PEP-CTERM
874745	886791	12046	WP_128153779.1		sorting domain-
					containing protein
					glutamine-
946145	950694	4549		guaA	hydrolyzing
					GMP synthase
046145	050604	4540	WD 199159795 1		hypothetical
940140	950094	4049	WI _120103700.1		protein
					restriction
1093926	1099422	5496	WP_128153803.1		endonuclease
					subunit S
1490067	1495091	5051	WD 081490197 1	lrdp F	K(+)-transporting
1400007	1403921	5654	W1_001429137.1	карг	ATPase subunit F
					CRISPR-
2553348	2558560	5212	WP_094136088.1	cas2	associated
					endonuclease Cas2
2686094	2691176	5082	WP_094137864.1		hypothetical protein

TABLE 4.22: Islands of Akkermansia muciniphila AMDK-20 Strain

FIGURE 4.42: Bacteriocin of Akkermansia muciniphila AMBK-20 from BAGEL4

4.2.23 Akkermansia muciniphila AMDK-21

Figure 4.43 Indicates the Presence of Genomic Islands in *Akkermansia muciniphila* AMDK-21.Table 4.23 Summarizes the Details of Genomic Islands and Genes Present in Respective Island. Figure 4.44 Indicates the Bacteriocin Producing Genes Predicted by BAGEL. The probabilities that *Akkermansia muciniphila* strains are human pathogens were predicted by Pathogenecity island viewer and no pathogenecity islands found in *Akkermansia muciniphila*.

FIGURE 4.43: Genetic islands in *Akkermansia muciniphila* AMDK-21 as predicted by Island Viewer.

Island start	Island end	Length	Gene name	Gene ID	Product
49710	17176	1757	WD 109794794 1		hypothetical
42719	4/4/0	4707	WF_102734724.1		protein
101072	137019	35947	WP_046436036.1		hypothetical protein
109949	111404	2061	WD 199159699 1		hypothetical
105545	111404	8001	W1_120105002.1		protein
116307	125071	8764	WP 128153685 1		hypothetical
110507	125071	0104	W1_12010000000		protein
190131	136376	7245	WP 046436036 1		hypothetical
129101	130370	1240	W1_040450050.1		protein
367245	378667	78667 11422	WP_102733694.1		HDIG domain-
001240	510001				containing protein
					MBL fold
808484	832586	24102	$WP_{-}102733745.1$		metallo-
					hydrolase
					trimeric
810084	831065	20981	WD 109794091 1		intracellular
010004	001000		W1 _10270 1 001.1		cation channel
					family protein
					helix-turn-helix
874687	886733	12046	WP_094140708.1		${\it transcriptional}$
					regulator
					type I restriction
1093891	1099387	5496	WP_128153805.1		endonuclease
					subunit R
1326520	1334008	7488	WP 022197112 1		hypothetical
	1001000	1 100			protein

 TABLE 4.23:
 Genetic islands in Akkermansia muciniphila AMDK-21

Island start	Island end	Length	Gene name	Gene ID	Product	
1480037	1485891	5854	WP_081429137.1	kdpF	K(+)-transporting ATPase subunit F	
2553316	2558529	5213	WP_102734692.1		CRISPR- associated helicase/ endonuclease Cas3	
2587831	2604438	16607	WP_022197102.1		glycosyltransferase family 2 protein	
2628722	2633199	4477	WP_094139728.1		hypothetical protein	
21.fasta AOI 01						

TABLE 4.23: Genetic islands in Akkermansia muciniphila AMDK-21

FIGURE 4.44: Genetic Islands in *Akkermansia muciniphila* ATCC BAA-835 as Predicted by Island Viewer.

4.2.24 Akkermansia muciniphila AMDK-22

Figure 4.45 Indicates the Presence of Genomic Islands in *Akkermansia muciniphila* AMDK-22. Table 4.24 Summarizes the Details of Genomic Islands and Genes Present in Respective Island. Figure 4.46 Indicates the Bacteriocin Producing Genes Predicted by BAGEL. The probabilities that *Akkermansia muciniphila*

strains are human pathogens were predicted by Pathogenecityisland viewer and no pathogenecity islands found in *Akkermansia muciniphila*.

FIGURE 4.45: Genetic Islands in *Akkermania muciniphila* AMDK-22 as Predicted by Island Viewer.

TABLE 4.24: Islands of Akkermansia muciniphila AMDK-22 Strain

Island start	Island end	Length	Gene name	Gene ID	Product
101101	137050	35949	WP_046436080.1		tyrosine-type recombinase/ integrase
103372	111435	8063	WP_128153682.1		hypothetical protein
129162	136407	7245	WP_046436036.1		hypothetical protein
367284	378706	11422	WP_094140769.1		hypothetical protein

Island start	Island end	Length	Gene name	Gene ID	Product
000510	020610	0.4100	WD 100704004 1		hypothetical
808516	832618	24102	WP_102734924.1		protein
					trimeric
010110	021007	20001	WD 100794091 1		intracellular
810116	831097	20981	WP_102734931.1		cation channel f
					amily protein
					PEP-CTERM
074700	000700	10040	UD 100159550 1		sorting domain-
8/4/22	880768	12046	WP_128153779.1		containing
					protein
					glutamine-
946120	950669	4549		guaA	hydrolyzing
					GMP synthase
					type I restriction
1093917	1099413	5496	WP_128153805.1		endonuclease
					subunit R
					K(+)-transp
1480056	1485911	5855	WP_081429137.1	kdpF	orting
					ATPase subunit F
					AAA domain-
2214709	2222414	7705	WP_102739544.1		containing
					protein
					CRISPR-
0550005	0110100		WP_094136088.1	cas2	associated
2000020	2000000	5215			endonuclease
					Cas2

TABLE 4.24: Islands of Akkermansia muciniphila AMDK-22 Strain

Island start	Island end	Length	Gene name	Gene ID	Product
					glycosylt
2587841	2604448	16607	WP_022197102.1		ransferase
2001041					family 2 p
					rotein
2686072	2601153	5081	WP 046437351 1	lenB	signal
2000072	2051100	0001	WI _010101010111	юрь	peptidase I

TABLE 4.24: Islands of Akkermansia muciniphila AMDK-22 Strain

FIGURE 4.46: Bacteriocin of Akkermansia muciniphila AMBK-22 from BAGEL4

Chapter 5

Conclusions and Recommendations

Due to rising resistance against various antibiotics among pathogens, as well as the negative health impact of antibiotics of host health, a focus has been diverted from treatment to prevention. It is now preferred to boost health and immunity of host to fight against pathogen instead of using chemical entities to kill pathogens. Use if probiotics is one of these strategies, where health benefits or beneficialcapacifies of normal gut microflora is used. It is quite a common practice to use probiotics against gut dysbiosis. But the potential use of probiotics against other diseases is yet to be explore and has great potential. Obesity is very prevalent disease and enjoys the status of a pandemic, Pakistan lies at position nine in list of obese countries. Various surgical procedure, therapeutic interventions are used to control obesity along with changes in food and exercise regimen. Akkermansia muciniphilais reported repeatedly to be associated with control of obesity. Akkermansia muciniphila is a normal gut microflora and is part of healthy gut microbiome. In principles this bacterial species has a great potential to be used as a probiotic against obesity. on the other hand, the questions have been raised against the safety of this bacterial species. This project was designed to check the probiotic potentials and safety of Akkermansia muciniphila as probiotic. In silico pipeline of Pangenome analysis was utilized to check the presence of virulent genes in order to ensure safety. This analysis also ensured the genome plasticity and vulnerability of the bacterial species to possess virulent genes. To determine the evolution in the strains phylogenetic analysis was performed. Probiotic potentials were determined using BAGEL.

It was found by pangenome analysis as well COG and phylogenetic analysis that genome of all selected strains (selected based on availability of whole genome sequence and human origin) is stable and no frequent shuffling are observed in these genomes. Another feature for safety was resistome analysis and it was found that all selected strains of *Akkermansia muciniphila* just show intrinsic resistance against commonly used antibiotics, a required character for a potential probiotic to maintain healthy gut population. No multidrug resistance was found in any of the selected strains. For further validation of results, all the potential islands were analyzed using Island Viewer and analysis of genes revealed that no potential virulent genes are present.

Bacteriocin productions another important character, these small peptides are secreted by a bacterium to inhibit growth of closely related bacterial species. All the bacterial strains were found to possess bacteriocin production genes. Hence, we can conclude based on these observations that *Akkermansia muciniphila* specifically the 19 selected strains in this study are found to safe for use as probiotic against obesity. The major constrains or limiting factors in generalizing this opinion of safety is un availability of whole genome sequence of various strains of human origin, it is necessary to select few strains, perform sequence analysis to explore presence of virulent determinants or pathogenic genes. For future, it is strongly recommended to have validation by in vivo studies so that we can have a better idea about the safety and probiotic potential of *Akkermansia muciniphila* against obesity.

Bibliography

- Derrien, M., C. Belzer, and W.M. de Vos, Akkermansia muciniphila and its role in regulating host functions. Microbial pathogenesis, 2017. 106: p'p. 171-181.
- [2]. Anhê, F.F., J.D. Schertzer, and A. Marette, Bacteria to alleviate metabolic syndrome. Nature medicine, 2019. 25(7): p'p. 1031-1033.
- [3]. WHO, F., Human vitamin and mineral requirements. Food and Agriculture Organization of the United Nations, Bangkok, Thailand. ISBN, 2002: p'p. 1014-9228.
- [4]. "AFRC, R.F., Probiotics in man and animals. Journal of applied bacteriology", 1989. 66(5): p'p. 365-378;
- [5]. Kalam-Salminen, L., Hoidon laatu lapsivuodeosastoilla Suomessa ja Virossa: näkökulmia asiakaskeskeiseen laatuun ja sen kehittämiseen. 2005: Turun yliopisto, p'p. 203-255.
- [6]. Kleerebezem, M., et al., Complete genome sequence of Lactobacillus plantarum WCFS1. Proceedings of the National Academy of Sciences, 2003. 100(4): p'p. 1990-1995.
- [7]. Nagpal, R., et al., Gut microbiota in health and disease: an overview focused on metabolic inflammation. Beneficial microbes, 2016. 7(2): p'p. 181-194.
- [8]. D'emilio, C., et al., Apparatus and method for detecting weapons of mass destruction. 2006, Google Patents.

- [9]. Ley, R.E., et al., Human gut microbes associated with obesity. nature, 2006.
 444(7122): p'p. 1022-1023.
- [10]. Wilkens, H., et al., Effect of inhaled iloprost plus oral sildenafil in patients with primary pulmonary hypertension. Circulation, 2001. 104(11): p'p. 1218-1222.
- [11]. "Forestier, C., et al., Probiotic activities of Lactobacillus casei rhamnosus: in vitro adherence to intestinal cells and antimicrobial properties". Research in Microbiology, 2001. 152(2): p'p. 167-173;
- [12]. "Lavasani, S., et al., A novel probiotic mixture exerts a therapeutic effect on experimental autoimmune encephalomyelitis mediated by IL-10 producing regulatory T cells". PloS one, 2010. 5(2): p'p. e9009-9012;
- [13]. "Nagpal, R., et al., Probiotics, their health benefits and applications for developing healthier foods: a review. FEMS microbiology letters", 2012. 334(1): p'p. 1-15;
- [14]. "Derrien, M., et al., Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium". International journal of systematic and evolutionary microbiology, 2004. 54(5): p'p. 1469-1476;
- [15]. Koskenniemi, K., et al., Proteomics and transcriptomics characterization of bile stress response in probiotic Lactobacillus rhamnosus GG. Molecular & Cellular Proteomics, 2011. 10(2).
- [16]. Yan, F. and D.B. Polk, Probiotics as functional food in the treatment of diarrhea. Current Opinion in Clinical Nutrition & Metabolic Care, 2006. 9(6): p'p. 717-721.
- [17]. Mack, D., et al., Extracellular MUC3 mucin secretion follows adherence of Lactobacillus strains to intestinal epithelial cells in vitro. Gut, 2003. 52(6): p'p. 827-833.

- [18]. Mattar, A., et al., Probiotics up-regulate MUC-2 mucin gene expression in a Caco-2 cell-culture model. Pediatric surgery international, 2002. 18(7): p'p. 586-590.
- [19]. "Gaudier, E., et al., The VSL[#] 3 probiotic mixture modifies microflora but does not heal chronic dextran-sodium sulfate–induced colitis or reinforce the mucus barrier in mice". The Journal of nutrition, 2005. 135(12): p'p. 2753-2761;
- [20]. "Caballero-Franco, C., et al., The VSL[#] 3 probiotic formula induces mucin gene expression and secretion in colonic epithelial cells". American Journal of Physiology-Gastrointestinal and Liver Physiology, 2007. 292(1): p'p. G315-G322;
- [21]. "Kelsall, B., Innate and adaptive mechanisms to control of pathological intestinal inflammation". The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland, 2008. 214(2): p'p. 242-259;
- [22]. Möndel, M., et al., Probiotic E. coli treatment mediates antimicrobial human β-defensin synthesis and fecal excretion in humans. Mucosal immunology, 2009. 2(2): p'p. 166-172.
- [23]. Schlee, M., et al., Probiotic lactobacilli and VSL[#] 3 induce enterocyte βdefensin 2. Clinical & Experimental Immunology, 2008. 151(3): p'p. 528-535.
- [24]. Penner, R., R.N. Fedorak, and K.L. Madsen, Probiotics and nutraceuticals: non-medicinal treatments of gastrointestinal diseases. Current opinion in pharmacology, 2005. 5(6): p'p. 596-603.
- [25]. Alakomi, H.-L., et al., Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Appl. Environ. Microbiol., 2000. 66(5): p'p. 2001-2005.

- [26]. "Liévin-Le Moal, V. and A.L. Servin, The front line of enteric host defense against unwelcome intrusion of harmful microorganisms: mucins, antimicrobial peptides, and microbiota". Clinical microbiology reviews, 2006. 19(2): p'p. 315-337;
- [27]. Vassiliadis, G., et al., Isolation and characterization of two members of the siderophore-microcin family, microcins M and H47. Antimicrobial agents and chemotherapy, 2010. 54(1): p'p. 288-297.
- [28]. "Johnson-Henry, K.C., et al., Surface-layer protein extracts from Lactobacillus helveticus inhibit enterohaemorrhagic Escherichia coli O157: H7 adhesion to epithelial cells. Cellular microbiology", 2007. 9(2): p'p. 356-367;
- [29]. "Wu, X., et al., Saccharomyces boulardii ameliorates Citrobacter rodentiuminduced colitis through actions on bacterial virulence factors. American Journal of Physiology-Gastrointestinal and Liver Physiology", 2008. 294(1): p'p. G295-G306;
- [30]. Galdeano, C.M. and G. Perdigon, The probiotic bacterium Lactobacillus casei induces activation of the gut mucosal immune system through innate immunity. Clin. Vaccine Immunol., 2006. 13(2): p'p. 219-226.
- [31]. Ogawa, M., et al., Protective Effect of Lactobacillus casei Strain Shirota on Shiga Toxin-Producing Escherichia coliO157: H7 Infection in Infant Rabbits. Infection and immunity, 2001. 69(2): p'p. 1101-1108.
- [32]. "Tien, M.-T., et al., Anti-inflammatory effect of Lactobacillus casei on Shigella-infected human intestinal epithelial cells". The Journal of Immunology, 2006. 176(2): p'p. 1228-1237;
- [33]. Miller, M.B. and B.L. Bassler, Quorum sensing in bacteria. Annual Reviews in Microbiology, 2001. 55(1): p'p. 165-199.
- [34]. Kendall, M.M. and V. Sperandio, Quorum sensing by enteric pathogens. Current opinion in gastroenterology, 2007. 23(1): p'p. 10-15.

- [35]. Medellin-Peña, M.J., et al., Probiotics affect virulence-related gene expression in Escherichia coli O157: H7. Appl. Environ. Microbiol., 2007. 73(13): p'p. 4259-4267.
- [36]. Gogineni, V.K., L.E. Morrow, and M. Malesker, Probiotics: mechanisms of action and clinical applications. J Prob Health, 2013. 1(101): p'p. 2.
- [37]. "Bartlett, J.G., Management of Clostridium difficile infection and other antibiotic-associated diarrhoeas. European journal of gastroenterology & hepatology", 1996. 8(11): p'p. 1054-1061;
- [38]. Mueller, S., et al., Differences in fecal microbiota in different European study populations in relation to age, gender, and country: a cross-sectional study. Appl. Environ. Microbiol., 2006. 72(2): p'p. 1027-1033.
- [39]. Guigoz, Y., J. Doré, and E.J. Schiffrin, The inflammatory status of old age can be nurtured from the intestinal environment. Current Opinion in Clinical Nutrition & Metabolic Care, 2008. 11(1): p'p. 13-20.
- [40]. "Szajewska, H., M. Ruszczyński, and A. Radzikowski, Probiotics in the prevention of antibiotic-associated diarrhea in children: a meta-analysis of randomized controlled trials". The Journal of pediatrics, 2006. 149(3): p'p. 367-372. e1;
- [41]. Adam, J., et al., Controlled double-blind clinical trials of Ultra-Levure: Multicentre study by 25 physicians in 388 cases. Gazette Medicale de France, 1977. 84: p'p. 2072-2078.
- [42]. Kotowska, M., P. Albrecht, and H. Szajewska, Saccharomyces boulardii in the prevention of antibiotic-associated diarrhoea in children: a randomized double-blind placebo-controlled trial. Alimentary pharmacology & therapeutics, 2005. 21(5): p'p. 583-590.
- [43]. "McFarland, L.V., Systematic review and meta-analysis of Saccharomyces boulardii in adult patients". World journal of gastroenterology: WJG, 2010. 16(18): p'p. 2202;

- [44]. Castagliuolo, I., et al., Saccharomyces boulardii protease inhibits Clostridium difficile toxin A effects in the rat ileum. Infection and immunity, 1996. 64(12): p'p. 5225-5232.
- [45]. Qamar, A., et al., Saccharomyces boulardii stimulates intestinal immunoglobulin a immune response to clostridium difficiletoxin a in mice. Infection and immunity, 2001. 69(4): p'p. 2762-2765.
- [46]. "McFarland, L.V., et al., Prevention of b-lactam-associated diarrhea by Saccharomyces boulardii compared with placebo". American Journal of Gastroenterology, 1995. 90(3): p'p. 439-448;
- [47]. Plummer, S., et al., Clostridium difficile pilot study: effects of probiotic supplementation on the incidence of C. difficile diarrhoea. International Microbiology, 2004. 7(1): p'p. 59-62.
- [48]. Thomas, M.R., et al. Lack of effect of Lactobacillus GG on antibioticassociated diarrhea: a randomized, placebo-controlled trial. in Mayo Clinic Proceedings. 2001. Elsevier.
- [49]. Can, M., et al., Prophylactic Saccharomyces boulardii in the prevention of antibiotic-associated diarrhea: a prospective study. Medical science monitor, 2006. 12(4): p'p. PI19-PI22.
- [50]. Surawicz, C.M., et al., The search for a better treatment for recurrent Clostridium difficile disease: use of high-dose vancomycin combined with Saccharomyces boulardii. Clinical infectious diseases, 2000. 31(4): p'p. 1012-1017.
- [51]. Hickson, M., et al., Use of probiotic Lactobacillus preparation to prevent diarrhoea associated with antibiotics: randomised double blind placebo controlled trial. Bmj, 2007. 335(7610): p'p. 80.
- [52]. Armuzzi, A., et al., The effect of oral administration of Lactobacillus GG on antibiotic-associated gastrointestinal side-effects during Helicobacter pylori

eradication therapy. Alimentary pharmacology & therapeutics, 2001. 15(2): p'p. 163-169.

- [53]. Dao, M.C., et al., Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut, 2016. 65(3): p'p. 426-436.
- [54]. "Cremonini, F., et al., Effect of different probiotic preparations on anti-Helicobacter pylori therapy-related side effects: a parallel group, triple blind, placebo-controlled study". The American journal of gastroenterology, 2002. 97(11): p'p. 2744-2749;
- [55]. Szajewska, H., A. Horvath, and A. Piwowarczyk, Meta-analysis: the effects of Saccharomyces boulardii supplementation on Helicobacter pylori eradication rates and side effects during treatment. Alimentary pharmacology & therapeutics, 2010. 32(9): p'p. 1069-1079.
- [56]. Marshall, J.K., et al., Incidence and epidemiology of irritable bowel syndrome after a large waterborne outbreak of bacterial dysentery. Gastroenterology, 2006. 131(2): p'p. 445-450.
- [57]. "Porter, C.K., et al., The incidence and gastrointestinal infectious risk of functional gastrointestinal disorders in a healthy US adult population". American Journal of Gastroenterology, 2011. 106(1): p'p. 130-138;
- [58]. "Husebye, E., et al., Influence of microbial species on small intestinal myoelectric activity and transit in germ-free rats". American Journal of Physiology-Gastrointestinal and Liver Physiology, 2001. 280(3): p'p. G368-G380;
- [59]. Shah, E.D., et al., Abnormal breath testing in IBS: a meta-analysis. Digestive diseases and sciences, 2010. 55(9): p'p. 2441-2449.
- [60]. Moayyedi, P., et al., The efficacy of probiotics in the treatment of irritable bowel syndrome: a systematic review. Gut, 2010. 59(3): p'p. 325-332.

- [61]. "Brenner, D.M., et al., The utility of probiotics in the treatment of irritable bowel syndrome: a systematic review. American Journal of Gastroenterology", 2009. 104(4): p'p. 1033-1049;
- [62]. "McFarland, L.V. and S. Dublin, Meta-analysis of probiotics for the treatment of irritable bowel syndrome". World journal of gastroenterology: WJG, 2008. 14(17): p'p. 2650;
- [63]. for Nursing, N.C.C., Literature review of prognostic, resource use and quality of data, in Irritable Bowel Syndrome in Adults: Diagnosis and Management of Irritable Bowel Syndrome in Primary Care [Internet]. 2008, Royal College of Nursing (UK).
- [64]. Hoveyda, N., et al., A systematic review and meta-analysis: probiotics in the treatment of irritable bowel syndrome. BMC gastroenterology, 2009. 9(1): p'p. 15.
- [65]. "Society, A.T. and I.D.S.o. America, Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia". American journal of respiratory and critical care medicine, 2005. 171(4): p'p. 388;
- [66]. Safdar, N., et al., Clinical and economic consequences of ventilator-associated pneumonia: a systematic review. Critical care medicine, 2005. 33(10): p'p. 2184-2193.
- [67]. Craven, D.E., F.G. De Rosa, and D. Thornton, Nosocomial pneumonia: emerging concepts in diagnosis, management, and prophylaxis. Current opinion in critical care, 2002. 8(5): p'p. 421-429.
- [68]. "Chastre, J. and J.-Y. Fagon, Ventilator-associated pneumonia. American journal of respiratory and critical care medicine", 2002. 165(7): p'p. 867-903;
- [69]. Kollef, M.H., What is ventilator-associated pneumonia and why is it important? Respiratory care, 2005. 50(6): p'p. 714-724.

- [70]. Kollef, M.H., Prevention of hospital-associated pneumonia and ventilatorassociated pneumonia. Critical care medicine, 2004. 32(6): p'p. 1396-1405.
- [71]. Forestier, C., et al., Oral probiotic and prevention of Pseudomonas aeruginosa infections: a randomized, double-blind, placebo-controlled pilot study in intensive care unit patients. Critical care, 2008. 12(3): p'p. R69.
- [72]. Knight, D.J., et al., Effect of synbiotic therapy on the incidence of ventilator associated pneumonia in critically ill patients: a randomised, double-blind, placebo-controlled trial. Intensive care medicine, 2009. 35(5): p'p. 854.
- [73]. Rook, G. and L. Brunet, Microbes, immunoregulation, and the gut. Gut, 2005. 54(3): p'p. 317-320.
- [74]. Vanderpool, C., F. Yan, and B.D. Polk, Mechanisms of probiotic action: implications for therapeutic applications in inflammatory bowel diseases. Inflammatory bowel diseases, 2008. 14(11): p'p. 1585-1596.
- [75]. Grönlund, M., et al., Importance of intestinal colonisation in the maturation of humoral immunity in early infancy: a prospective follow up study of healthy infants aged 0–6 months. Archives of Disease in Childhood-Fetal and Neonatal Edition, 2000. 83(3): p'p. F186-F192.
- [76]. Van Passel, M.W., et al., The genome of Akkermansia muciniphila, a dedicated intestinal mucin degrader, and its use in exploring intestinal metagenomes. PloS one, 2011. 6(3): p'p. e16876.
- [77]. "Singh, M., et al., Efficacy of different estrus synchronization protocols in repeat breeder cows". INDIAN JOURNAL OF ANIMAL SCIENCES, 2019. 89(9): p'p. 958-960;
- [78]. Collado, M.C., et al., Intestinal integrity and Akkermansia muciniphila, a mucin-degrading member of the intestinal microbiota present in infants, adults, and the elderly. Applied and environmental microbiology, 2007. 73(23): p'p. 7767-7770.

- [79]. Karpiński, T.M. and A.K. Szkaradkiewicz, Microbiology of dental caries. J Biol Earth Sci, 2013. 3(1): p'p. M21-4.
- [80]. Jan, G., Belzacq AS, Haouzi D, Rouault A, Metivier D, Kroemer G, and Brenner C. Propionibacteria induce apoptosis of colorectal carcinoma cells via short-chain fatty acids acting on mitochondria. Cell Death Differ, 2002.
 9: p'p. 179-188.
- [81]. Shao, Z., H. Zhao, and H. Zhao, DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic acids research, 2009. 37(2): p'p. e16-e16.
- [82]. Overbeek, R., et al., The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). 2014. 42(D1): p'p. D206-D214.
- [83]. van Passel, M.W.J., et al., The genome of Akkermansia muciniphila, a dedicated intestinal mucin degrader, and its use in exploring intestinal metagenomes. PloS one, 2011. 6(3): p'p. e16876-e16876.
- [84]. "Cheung, E.Y., M.E. Gahan, and D. McNevin, Predictive DNA analysis for biogeographical ancestry. Australian Journal of Forensic Sciences" 2018. 50(6): p'p. 651-658;
- [85]. Jia, B., et al., CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic acids research, 2016: p'p. gkw1004.
- [86]. Chen, L., et al., VFDB: a reference database for bacterial virulence factors. 2005. 33(suppl_1): p'p. D325-D328.
- [87]. Ribbera, A., et al., Comparative genomic and functional analysis of Lactobacillus casei and Lactobacillus rhamnosus strains marketed as probiotics. Applied and environmental microbiology, 2013. 79(6): p'p. 1923-1933.
- [88]. Sherry, S.T., et al., dbSNP: the NCBI database of genetic variation. Nucleic acids research, 2001. 29(1): p'p. 308-311.

- [89]. Page, A.J., et al., Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics, 2015. 31(22): p'p. 3691-3693.
- [90]. Chaudhari, N.M., V.K. Gupta, and C. Dutta, BPGA-an ultra-fast pangenome analysis pipeline. Scientific reports, 2016. 6(1): p'p. 1-10.
- [91]. Bertelli, C., et al., IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets. Nucleic acids research, 2017. 45(W1): p'p. W30-W35.